
2D-TUCKER is PPAD-complete

Dömötör Pálvölgyi

Ecole Polytechnique Fédérale de Lausanne, Switzerland,
dom@cs.elte.hu,

http://www.cs.elte.hu/˜dom

Abstract. Tucker’s lemma states that if we triangulate the unit disc
centered at the origin and color the vertices with {1,−1, 2,−2} in an
antipodal way (if |z| = 1, then the sum of the colors of z and −z is
zero), then there must be an edge for which the sum of the colors of its
endpoints is zero. But how hard is it to find such an edge? We show that if
the triangulation is exponentially large and the coloring is determined by
a deterministic Turing-machine, then this problem is PPAD-complete
which implies that there is not too much hope for a polynomial algorithm.

1 Introduction

Papadimitriou defined in [3] the complexity class PPAD which is a spe-
cial class of search problems. It contains the problems which are reducible to
LEAFD, a total search problem defined as follows.

Definition 1 (LEAFD). We are given the description of a deterministic Turing
machine M which for every input v ∈ {0, 1}n returns an ordered pair from the
set {0, 1}n∪{no} in time poly(n). These will be denoted by Min(v) and Mout(v).
This defines a directed graph on V = {0, 1}n such that uv ∈ E if Mout(u) = v

and Min(u) = v. This graph is a collection of directed cycles and paths. We also
require that Min(0n) = no, meaning that 0n is a leaf (or an isolated node). The
parity argument implies that in the former case there must be another leaf. The
input is 0n (apart from the description of M), the output of the search problem
is another leaf (or 0n if it is an isolated node).

Remark 2. We can suppose that M is equipped with a standard built-in mech-
anism that checks its running time and if M would run too long, it halts and
outputs no. It can also guarantee Min(0n) = no. It can be easily checked whether
the description of M has this property and if not, then the output of the search
problem can also be violation. In the problems that we will define later, we sim-
ilarly allow the output to be violation if M violates one of the properties that we
require.

Remark 3. This problem is almost in TFNP, the class of total search problems
verifiable in polynomial time. We do not want to define this class here (see [2]).

The reason why it is not in the class with this definition is that the verification
time will depend on the running time of M, so it is not bounded by some fixed
polynomial like it is in the case of SAT. An alternative definition would be to
define a class called LEAFD-c where the running time of M would be bounded
by nc or to define M as a boolean circuit. It is not the goal of this paper to go
deeper in this problem.

For the definition of reduction among search problems, we direct the reader
to the original paper of Papadimitriou [3]. It was also shown there that the search
versions of many well-known theorems that use some kind of parity argument
belong to PPAD, moreover, many are also complete for this class. The following
analogue of Sperner’s lemma was shown to be PPAD-complete by Chen and
Deng [1]. (When we write x ∈ {0, 1}n, we also mean the number in base two
that it represents.)

Definition 4 (2D-SPERNER). We are given the description of a deterministic
Turing machine M which for every input (u, v) ∈ {0, 1}2n such that u + v ≤ 2n

returns either 1, 2 or 3 in time poly(n). Furthermore, M(0, 0) = 1, M(2n, 0) = 2,
M(0, 2n) = 3, for all i < 2n M(0, i) 6= 3, M(i, 0) 6= 2 and for all i + j = 2n

M(i, j) 6= 1. The output (whose existence is guaranteed by Sperner’s lemma) is
(u, v) ∈ {0, 1}2n for which M(u, v), M(u+1, v) and M(u, v+1) are all different.

One can similarly define 3D-SPERNER and other higher dimensional ana-
logues. It is also possible to define a continuous version, which can be denoted by
2D-BROUWER, the interested reader is again directed to [3] where it is also
shown that all these variants are equivalent to LEAFD and thus are PPAD-
complete.

Definition 5 (2D-TUCKER). We are given the description of a deterministic
Turing machine M which for every input (u, v) ∈ {0, 1}2n returns either 1,
−1, 2 or −2 in time poly(n). Furthermore, for all i M(0, i) = −M(2n, 2n − i)
and M(i, 0) = −M(2n − i, 2n). The output (whose existence is guaranteed by
Tucker’s lemma) is (u, v) ∈ {0, 1}2n and (u′, v′) ∈ {0, 1}2n for which |u−u′| ≤ 1,
|v − v′| ≤ 1 and M(u, v) = −M(u′, v′).

Remark 6. Tucker’s lemma is often stated in a slightly different way, more
similar to Sperner’s, and it requires the square to be triangulated. The above
search problem is clearly easier than the triangulated one, so when we prove
a hardness result about 2D-TUCKER, that also implies the hardness of the
triangulated version, so our results hold for both cases.

The respective higher dimensional and continuous versions are denoted by
3D-TUCKER and 2D-BORSUK-ULAM, the interested reader is again di-
rected to [3] where it is shown that the higher dimensional version is PPAD-
complete and 2D-BORSUK-ULAM is equivalent to 2D-TUCKER. The PPAD-
completeness of 2D-TUCKER was posed as an open problem both in [3] and
in [1]. In this note we prove this result.

Theorem 7. 2D-TUCKER is PPAD-complete.

2 Reduction of LEAFD to 2D-TUCKER

It was shown in [3] that 2D-TUCKER ∈ PPAD, to prove hardness, we will
reduce LEAFD to it. The reduction is surprisingly easy and only uses technics
similar to the ones appearing already in [1].

We will call the vertices of the grid points and the vertices of the graph
generated by M simply vertices. We say that two points are neighbors if their
distance is ≤

√
2 (meaning there is a little square that has both as its vertex).

We call two points negated if the sum of their colors is zero.
The goal is, that given any M that generates an input for LEAFD, we want

to produce a coloring c of the points of the 20 · 22n × 20 · 22n grid with colors
±{1, 2} such that if one finds two negated neighbors, then we can find a leaf in
the graph generated by M .

The idea is that for every vertex we reserve a part of the grid and if there
are two negated neighbors in a reserved part, that will imply that the vertex to
which this part belongs to is a leaf (there cannot be negated neighbors outside
the parts reserved for vertices). Most part of the square is filled with 1’s, the
edges are represented by tubes of −2,−1, 2 going from one reserved part to the
other, and these tubes are disjoint (if two tubes would cross, we slightly modify
them in the vicinity of the crossing so as they evade each other). Unfortunately
it is quite ugly to give a precise description of this construction by words, we
advice the reader to consult the Figures which might be sufficient even without
reading the text to understand the whole reduction.

For a vertex vi (where the indices are an arbitrary enumeration of the 2n

vertices with v0 being 0n) we reserve a part close to the left side of the square,
Vi = [8, . . . , 10]× [20i2n + 10, . . . , 20(i + 1)2n − 10]. For different i’s, these parts
are disjoint and are above each other. We also reserve a part for every possible
edge of the graph. For the possible vivj edge we reserve a part that connects the
lower half of Vi and the upper half of Vj via a ⊐ shape1, Ei = [11, . . . , 20i2n +
10+10j]×[20i2n+10+10j, . . . , 20i2n+10+10j+2]∪[20i2n+10+10j, . . . , 20i2n+
10+10j+2]×[20i2n+10+10j, . . . , 20j2n+10·2n+10+10i+2]∪[11, . . . , 20i2n+
10+10j +2]× [20j2n +10 ·2n +10+10i, . . . , 20j2n +10 ·2n +10+10i+2]. These
regions are mainly disjoint, every intersection Ei ∩Ej is a little square, far from
the other edges. If vivj is an edge, then we fill out this tube of thickness 3 with
−2,−1, 2, with the −1’s being in the middle, the −2’s being in the bottom when
leaving vi and in the top when entering vj , the 2’s being in the top when leaving
vi and in the bottom when entering vj . (We deal with the intersections of filled
out tubes later). Remember that most of the square is filled out with 1’s, so if a
point does not belong to a part reserved to an edge or vertex, then its color is 1.
This way we do not create any negated neighbors outside of the parts reserved
for vertices, since the boundaries of the tubes are always ±2’s. Inside Vi, if vhvi

and vivj are both edges, we fill out the vertical tube of thickness 3 leading from
where the tube of the edge from vh enters down to where the tube of the edge to

1 we suggest to skip the following ugly description and just read the properties in the
next sentence

vj starts ([8, . . . , 10]× [20i2n +10+10j, . . . , 20i2n +10 · 2n +10+10h+2]) with
−2,−1, 2 such that the −1’s are in the middle, the −2’s are to the left and the
2’s are to the right. This way again do not create any negated neighbors. If vi

is a leaf, then leave it filled out with 1’s (which gives negated neighbors) except
for v0. To v0 we “drive in” the boundary of the square, we set c(m,m) = 2,
c(0, 0) = c(0, 1) = −2, for all 1 < i c(0, i) = c(i,m) = −1, for 0 < i < m

c(i,m− 1) = 2, for 2 < i < m c(1, i) = 2 and continue this tube to inside v0 and
from there to the start of the tube of the edge to its only neighbor.

We have almost solved the problem, the only thing left that we must handle
is if two filled out tubes cross. In this case we can simply modify the tubes in
the vicinity of their crossing such that we do not create negated neighbors. If
for example the edge ab would cross cd, then we modify the tubes such that
we obtain an ad and a bc edge (see Figures). Of course these will not really
be tubes leading from Va to Vd and from Vb to Vc because we are handling
several crossings, but that does not matter for us. We only want to preserve the
conditions that the colors are easy to determine and that there are no negated
neighbors outside the parts reserved for vertices.

Now the color of any point can be determined by a finite number of compu-
tations of M (we can easily decide from the coordinates of any point whether
it belongs to a part reserved for a vertex, an edge, to a crossing or to to the
remaining part of the grid). If we find two negated neighbors, they must be in
a part reserved for a vertex that is a leaf in the original graph. This finishes the
reduction.

3 Remarks and acknowledgment

The same argument works to solve 2D-SPERNER which slightly simplifies
the proof of [1].

An interesting question would be to determine the complexity of the so-called
octahedral Tucker’s lemma (here the dimension would be a part of the input in
unary), which might tell something about the complexity of necklace splitting
among two thieves with a lot of different kinds of beads. Since this theorem is
not so widely known and can be stated in a purely combinatorial way, we state
it here.

Lemma 8. (Octahedral Tucker’s lemma) If for any set-pair A,B ⊂ [n], A∩B =
∅, A∪B 6= ∅ we have a λ(A,B) ∈ ±[n−1] color, such that λ(A,B) = −λ(B,A),
then there are two set-pairs, (A1, B1) and (A2, B2) such that A1 ⊂ A2, B1 ⊂ B2

and λ(A1, B1) = −λ(A2, B2).

I would like to thank Jarek Byrka for discussions and reading the first version
of this paper.

2

-2 1 1 1 1

1

1

2

1

22

-1-1

11

-2

-1

-1

-1

-1

2 2

-1

2 1-1

2-1

12-1

-1

-2 -2

-1

2

1

-2

-1

2

1

-2

-1

2

1

-2

-1

2

-2 -2 -2

-2

-2

-1 -1

-12

2 -1 -2

2

2 2 2

-1 -1 -1

2

-2

2

-1

1

2

-1

1

2

-1

1

2

-1

1

2

-1

1

2

-1

1

2 1-1

2 1-1

2 1-1

2 1-1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

111111

2

-1

-2 -2

-1

2

-2

-1

2

-2

-1

2

-2

-1

2

-2 -2 -2

-2

-2

-1 -1

-12

2 -1 -2

2

-1

-2 -2

-1

2

-2

-1

2

2 -1 -2

2 -1 -2

2 -1 -2

2 -1 -2

-2

-2-2-2

-1-1

2

-2

-1

2

-2

-1

2

-2

-1

2

-2

-1

2

-2

-1

2

-2

-1

2

-2

-1

2

-2

-1

2

-2

-1

2

-2

-1

2

-2

-1

Vi

Vj

Fig. 1. The boundary “going” into the leaf v0 and An edge vivj

2

-1

-2 -2

-1

2

-2

-1

2

-2

-1

2

-2

-1

2

-2

-1

22

-1

-2 -2

-1

2

-2

-1

2

2

-2

-1

2

-2

-1

2

-2

-1

2

-2

-1

2

-2

-1

2

-2

-1

2

-2

-1

2

-2

-1

2

-2

-1

2

-2

-1

2

-2

-1

2

-2

-1

-2-2

-2

-2

-2

-2 -2

-2

-1

-1

-1

-1 22-2 -1

22-2 -1 22-2 -1

22-2 -1 22-2 -1

22-2 -1 22-2 -1

22-2 -1 22-2 -1

from Vh

to Vj

-2

-1

2

-2

-1

2

-2

-1

2

-2

-1

2

-2

-1

2

-2

-1

2

-2

-1

2

-2

-1

2

-2

-1

2

-2 -1 2

-2 -1 2

-1 2

2

-2

-2 -1

-2 -1 2

22

-1-1

-1

-2-2

-2

-2

-2 2

2

2

22

-1

-1

-1

-2 -2

-1-1

2 2

2

2

2

-1

-1

-1

-1

-2-2

-2

-2

-2

-2

-1

2

Fig. 2. The part Vi with edge from vh and to vj and Handling a crossing

Fig. 3. The graph of the path v0v3v1v4v2 before and after handling the crossings

References

1. Chen, X., Deng, X.: On the complexity of 2D discrete fixed point problem. In:
33rd International Colloquium on Automata, Languages and Programming, pp.
489–500 (2006).

2. N. Megiddo and C. H. Papadimitriou. On total functions, existence theorems, and
computational complexity, Theoretical Computer Science 81(2):317-324, 1991.

3. C. Papadimitriou, On the complexity of the parity argument and other inefficient
proofs of existence. J. Comput. System Sci. 48 (1994), pp. 498–532.

