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U2T is NP-
ompleteDömötör Pálvölgyi ⋆

Abstra
tWe show that U2T (the problem of de
iding whether the edge set of a simplegraph 
an be partitioned into two trees or not) is NP-
omplete.One 
an easily see that whether a simple graph is a tree or not is in P. It wasshown by Király that the problem of de
iding if a simple graph is the disjoint unionof three trees is NP-
omplete. Now we prove that for two trees the problem is alsoNP-
omplete. We will denote this problem by U2T. It obvious that U2T belongs toNP. To prove its 
ompleteness, we will show that Not-All-Equal SAT is redu
ibleto U2T.The Not-All-Equal SAT problem is the following: We are given polynomiallymany 
lauses over the variables x1, . . . , xn and we have to de
ide whether there isan evaluation of the variables su
h that ea
h 
lause 
ontains both a true and a falseliteral. This is 
alled a good evaluation. Eg., if the formula 
ontains at least one 
lauseof size one (like x1), it does not have a good evaluation. This problem is well knownto be NP-
omplete [1℄. (Note that instead of this we 
ould use SAT but then themaximum degree of our graph would signi�
antly in
rease.)Now we will 
onstru
t a graph G from a given 
lause set C. The graph G will 
onsistof two main parts: Li and Cj type subgraphs. A subgraph Li belongs to ea
h variable,while a subgraph Cj belongs to ea
h 
lause from C. Beside the Lis belonging to thevariables, we also have two extra subgraphs of this type: L0 and Ln+1. The vertex setsof the 
lauses are disjoint, while V (Li) ∩ V (Lj) 6= ∅ i� |i − j| = 1. If j = i + 1 then
V (Li) ∩ V (Lj) is a single vertex denoted by ti.A variable 
omponent Li 
onsists of four verti
es that form a 
y
le in the followingorder: ti−1, vi, ti and vi. There are no edges inside the 
y
le. We would like to a
hievethat one of the trees 
ontains the edges from ti−1 through vi to ti, while the otherfrom ti−1 through vi to ti. For simpli
ity, we denote t

−1 by α and tn+1 by ω. Bothtrees are desired to trail from α to ω. The idea is that we want to for
e one of the
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: 2trees to go through those vis for whi
h xi is true.Before we start the 
onstru
tion of the 
lause 
omponents, we introdu
e a notation:We say that two verti
es u and w are linked with a purple edge if(1) There is no edge between u and w.(2) The smaller 
onne
tivity 
omponent of G \ {u,w} (
alled purple 
omponent) 
on-sists of four verti
es: vuw
1 , vuw

2 , vuw
3 and vuw

4 .(3) The vuw
i verti
es form a 
y
le in this order.(4) The verti
es u and w are 
onne
ted only to vuw

1 .(See Figure 1.)This is a very useful stru
ture be
ause if G is the union of two trees, then they bothhave to enter this purple 
omponent sin
e a tree 
annot 
ontain a 
y
le. So if theverti
es are linked with a purple edge and E(G) = E(T )∪̇E(F ) (where T and F de-note the two trees), then it means that u ∈ V (T ) and w ∈ V (F ) or u ∈ V (F ) and
w ∈ V (T ) (or maybe both).
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Figure 1. A purple edge.A 
lause 
omponent Cj 
onsists of 3k verti
es where k is the size of the jth 
lausewhose literals are denoted by lj1, . . . , l
j

k. A 
y
le of length 2k is formed by the follow-ing verti
es in this order: pj
1, q

j
1, p

j
2, q

j
2, . . . p

j

k, q
j

k. The other k verti
es are denoted by
rj
1, . . . r

j

k. The vertex rj
i is always 
onne
ted to pj

i and it is also 
onne
ted to vm if
lji is xm or to vm if lji is xm. Furthermore, there is a purple edge between rj

i and qj
i .This will ensure that a tree 
oming in to the 
lause 
ir
le through a rj

i , 
annot �goout�. (See Figure 2. for a graph with one 
lause. The dashed edges mean purple edges.)
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Figure 2. The graph with the jth 
lause what is x1, x2, x3.We are ready with the 
onstru
tion, now we have to prove that it is 
orre
t. Theeasier part is to show that if our Not-All-Equal SAT problem has a good eval-uation, then we have two trees, T and F . First let us �x a good evaluation. Let thetree T 
ontain the path from α to ω through the vis for true xis and through the visfor false xis. Similarly F trails from α to ω through the vis for true xis and throughthe vis for false xis. If a tree 
ontains vi (or vi), let it also 
ontain the path to theproper pj
m if xi (or xi) is in the jth 
lause. This way both trees enter ea
h 
lause 
ir
lesin
e the evaluation satis�ed our Not-All-Equal SAT problem. Let the two edgesfrom pj

i to pj
i+1 belong to the tree that does not 
ontain rj

i . This guarantees that wehave no problem with the purple edges and one 
an easily see that the trees remain
onne
ted. So we are done with this part.To prove the other part, let us suppose that G = T ∪̇F . We know that v0 or
v0 ∈ V (T ), otherwise F would 
ontain the whole L0 
omponent and thus have a
y
le. We 
an suppose α ∈ V (T ). We 
an also suppose ω ∈ V (F ). Let us dire
t allthe edges of the trees away from here. Similarly, we 
an suppose ω ∈ V (T ) and V (F ).Now some basi
 observations.Proposition 1. There are no edges 
oming out of the purple 
omponents.Proof. Both trees have to enter ea
h purple 
omponent sin
e a tree 
annot 
ontain a
y
le and sin
e there are only two edges 
onne
ting a purple 
omponent to the restof the graph, both of them must be dire
ted toward the purple 
omponent.This means that the trees 
annot go through purple edges.EGRES Qui
k-Proof No.



: 4Proposition 2. There are no edges 
oming out of the 
lause 
omponents.Proof. Let us suppose that the edge from rj
i going to some vm (or vm) is dire
ted awayfrom rj

i and is in T . This implies pj
ir

j
i ∈ T as well be
ause T 
annot enter rj

i throughthe purple edge. But be
ause rj
i /∈ V (F ), therefore qj

i+1 ∈ V (F ) sin
e they are linkedwith a purple edge, so T must have entered pj
i from the dire
tion of pj

i−1 through qj
i−1.But then qj

i−1 /∈ V (F ), so rj
i−1 ∈ V (F ). This means T entered pj

i−1 from the dire
tionof pj
i−2. And we 
an go on so until we get ba
k to pj

i , what gives a 
ontradi
tion.So now we know that the 
lauses are dead ends as well as the purple 
omponents.Sin
e T trails from α to ω, it must 
ontain vi or vi for ea
h i. Similarly vi or vi ∈ V (F ).Moreover, for 1 ≤ i ≤ n, no vi or vi 
an be 
ontained in both be
ause it would destroythe 
onne
tivity of one of the trees. So we 
an de�ne xi to be true if vi ∈ V (T ). Nowthe only thing left to show is that the literals in the 
lauses are not equal. But if theywere, then the Cj 
omponent of the 
lause would be 
onne
ted to only one of the treesand hen
e that tree would 
ontain a 
ir
le, 
ontradi
tion. So we have shown that ea
htree partition yields a proper evaluation. �Now we give an estimation on the maximum degree of the graph that we 
on-stru
ted. Clearly all the verti
es, ex
ept the vis and vis, 
an have at most four edges. A
vi (or vi) has degree equal to two plus the o

uran
es of the literal it belongs to. But aNot-All-Equal SAT problem is easily redu
ible to a Not-All-Equal SAT-(2;2)problem (meaning that ea
h literal 
an o

ur at most twi
e). If a literal l would o

urin at least three 
lauses, then let us exe
ute the following operation until we have atmost two of ea
h literal: Repla
e (C1, l), (C2, l), (C3, l) with (l, z), (C1, l), (C2, z), (C3, z)where z is a new variable. Therefore the de
ision of whether a simple graph is thedisjoint union of two trees or not is NP-
omplete even for graphs with maximumdegree four.Referen
es[1℄ M. Garey and D. Johnson, Computers and Intra
tability: A Guide to the Theoryof NP-Completeness. W. H. Freeman and Company, New York, 1979.
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