
EGRES Quik-Proof No. 1
U2T is NP-ompleteDömötör Pálvölgyi ⋆

AbstratWe show that U2T (the problem of deiding whether the edge set of a simplegraph an be partitioned into two trees or not) is NP-omplete.One an easily see that whether a simple graph is a tree or not is in P. It wasshown by Király that the problem of deiding if a simple graph is the disjoint unionof three trees is NP-omplete. Now we prove that for two trees the problem is alsoNP-omplete. We will denote this problem by U2T. It obvious that U2T belongs toNP. To prove its ompleteness, we will show that Not-All-Equal SAT is reduibleto U2T.The Not-All-Equal SAT problem is the following: We are given polynomiallymany lauses over the variables x1, . . . , xn and we have to deide whether there isan evaluation of the variables suh that eah lause ontains both a true and a falseliteral. This is alled a good evaluation. Eg., if the formula ontains at least one lauseof size one (like x1), it does not have a good evaluation. This problem is well knownto be NP-omplete [1℄. (Note that instead of this we ould use SAT but then themaximum degree of our graph would signi�antly inrease.)Now we will onstrut a graph G from a given lause set C. The graph G will onsistof two main parts: Li and Cj type subgraphs. A subgraph Li belongs to eah variable,while a subgraph Cj belongs to eah lause from C. Beside the Lis belonging to thevariables, we also have two extra subgraphs of this type: L0 and Ln+1. The vertex setsof the lauses are disjoint, while V (Li) ∩ V (Lj) 6= ∅ i� |i − j| = 1. If j = i + 1 then
V (Li) ∩ V (Lj) is a single vertex denoted by ti.A variable omponent Li onsists of four verties that form a yle in the followingorder: ti−1, vi, ti and vi. There are no edges inside the yle. We would like to ahievethat one of the trees ontains the edges from ti−1 through vi to ti, while the otherfrom ti−1 through vi to ti. For simpliity, we denote t

−1 by α and tn+1 by ω. Bothtrees are desired to trail from α to ω. The idea is that we want to fore one of the
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: 2trees to go through those vis for whih xi is true.Before we start the onstrution of the lause omponents, we introdue a notation:We say that two verties u and w are linked with a purple edge if(1) There is no edge between u and w.(2) The smaller onnetivity omponent of G \ {u,w} (alled purple omponent) on-sists of four verties: vuw
1 , vuw

2 , vuw
3 and vuw

4 .(3) The vuw
i verties form a yle in this order.(4) The verties u and w are onneted only to vuw

1 .(See Figure 1.)This is a very useful struture beause if G is the union of two trees, then they bothhave to enter this purple omponent sine a tree annot ontain a yle. So if theverties are linked with a purple edge and E(G) = E(T )∪̇E(F ) (where T and F de-note the two trees), then it means that u ∈ V (T ) and w ∈ V (F ) or u ∈ V (F ) and
w ∈ V (T ) (or maybe both).

u
w

v
uw

1

v
uw

2

v
uw

3

v
uw

4

Figure 1. A purple edge.A lause omponent Cj onsists of 3k verties where k is the size of the jth lausewhose literals are denoted by lj1, . . . , l
j

k. A yle of length 2k is formed by the follow-ing verties in this order: pj
1, q

j
1, p

j
2, q

j
2, . . . p

j

k, q
j

k. The other k verties are denoted by
rj
1, . . . r

j

k. The vertex rj
i is always onneted to pj

i and it is also onneted to vm if
lji is xm or to vm if lji is xm. Furthermore, there is a purple edge between rj

i and qj
i .This will ensure that a tree oming in to the lause irle through a rj

i , annot �goout�. (See Figure 2. for a graph with one lause. The dashed edges mean purple edges.)
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Figure 2. The graph with the jth lause what is x1, x2, x3.We are ready with the onstrution, now we have to prove that it is orret. Theeasier part is to show that if our Not-All-Equal SAT problem has a good eval-uation, then we have two trees, T and F . First let us �x a good evaluation. Let thetree T ontain the path from α to ω through the vis for true xis and through the visfor false xis. Similarly F trails from α to ω through the vis for true xis and throughthe vis for false xis. If a tree ontains vi (or vi), let it also ontain the path to theproper pj
m if xi (or xi) is in the jth lause. This way both trees enter eah lause irlesine the evaluation satis�ed our Not-All-Equal SAT problem. Let the two edgesfrom pj

i to pj
i+1 belong to the tree that does not ontain rj

i . This guarantees that wehave no problem with the purple edges and one an easily see that the trees remainonneted. So we are done with this part.To prove the other part, let us suppose that G = T ∪̇F . We know that v0 or
v0 ∈ V (T ), otherwise F would ontain the whole L0 omponent and thus have ayle. We an suppose α ∈ V (T ). We an also suppose ω ∈ V (F ). Let us diret allthe edges of the trees away from here. Similarly, we an suppose ω ∈ V (T ) and V (F ).Now some basi observations.Proposition 1. There are no edges oming out of the purple omponents.Proof. Both trees have to enter eah purple omponent sine a tree annot ontain ayle and sine there are only two edges onneting a purple omponent to the restof the graph, both of them must be direted toward the purple omponent.This means that the trees annot go through purple edges.EGRES Quik-Proof No.



: 4Proposition 2. There are no edges oming out of the lause omponents.Proof. Let us suppose that the edge from rj
i going to some vm (or vm) is direted awayfrom rj

i and is in T . This implies pj
ir

j
i ∈ T as well beause T annot enter rj

i throughthe purple edge. But beause rj
i /∈ V (F ), therefore qj

i+1 ∈ V (F ) sine they are linkedwith a purple edge, so T must have entered pj
i from the diretion of pj

i−1 through qj
i−1.But then qj

i−1 /∈ V (F ), so rj
i−1 ∈ V (F ). This means T entered pj

i−1 from the diretionof pj
i−2. And we an go on so until we get bak to pj

i , what gives a ontradition.So now we know that the lauses are dead ends as well as the purple omponents.Sine T trails from α to ω, it must ontain vi or vi for eah i. Similarly vi or vi ∈ V (F ).Moreover, for 1 ≤ i ≤ n, no vi or vi an be ontained in both beause it would destroythe onnetivity of one of the trees. So we an de�ne xi to be true if vi ∈ V (T ). Nowthe only thing left to show is that the literals in the lauses are not equal. But if theywere, then the Cj omponent of the lause would be onneted to only one of the treesand hene that tree would ontain a irle, ontradition. So we have shown that eahtree partition yields a proper evaluation. �Now we give an estimation on the maximum degree of the graph that we on-struted. Clearly all the verties, exept the vis and vis, an have at most four edges. A
vi (or vi) has degree equal to two plus the ouranes of the literal it belongs to. But aNot-All-Equal SAT problem is easily reduible to a Not-All-Equal SAT-(2;2)problem (meaning that eah literal an our at most twie). If a literal l would ourin at least three lauses, then let us exeute the following operation until we have atmost two of eah literal: Replae (C1, l), (C2, l), (C3, l) with (l, z), (C1, l), (C2, z), (C3, z)where z is a new variable. Therefore the deision of whether a simple graph is thedisjoint union of two trees or not is NP-omplete even for graphs with maximumdegree four.Referenes[1℄ M. Garey and D. Johnson, Computers and Intratability: A Guide to the Theoryof NP-Completeness. W. H. Freeman and Company, New York, 1979.
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