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U2T is NP-complete

Domotor Palvolgyi *

Abstract

We show that U2T (the problem of deciding whether the edge set of a simple
graph can be partitioned into two trees or not) is NP-complete.

One can easily see that whether a simple graph is a tree or not is in P. It was
shown by Kirédly that the problem of deciding if a simple graph is the disjoint union
of three trees is NP-complete. Now we prove that for two trees the problem is also
NP-complete. We will denote this problem by U2T. It obvious that U2T belongs to
NP. To prove its completeness, we will show that NOT-ALL-EQUAL SAT is reducible
to U2T.

The NOT-ALL-EQUAL SAT problem is the following: We are given polynomially
many clauses over the variables xq,...,z, and we have to decide whether there is
an evaluation of the variables such that each clause contains both a true and a false
literal. This is called a good evaluation. Eg., if the formula contains at least one clause
of size one (like 1), it does not have a good evaluation. This problem is well known
to be NP-complete [1]. (Note that instead of this we could use SAT but then the
maximum degree of our graph would significantly increase.)

Now we will construct a graph G from a given clause set C. The graph G will consist
of two main parts: L; and C; type subgraphs. A subgraph L; belongs to each variable,
while a subgraph C; belongs to each clause from C. Beside the L;s belonging to the
variables, we also have two extra subgraphs of this type: Ly and L, ;. The vertex sets
of the clauses are disjoint, while V(L;) NV (L;) # 0 iff |i — j| = 1. If j = ¢ + 1 then
V(L;) N V(L;) is a single vertex denoted by t;.

A variable component L, consists of four vertices that form a cycle in the following
order: t;_1,v;,t; and v;. There are no edges inside the cycle. We would like to achieve
that one of the trees contains the edges from ¢; ; through v; to ¢;, while the other
from t; 4 through v; to t;. For simplicity, we denote t_; by a and t,,; by w. Both
trees are desired to trail from « to w. The idea is that we want to force one of the
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trees to go through those v;s for which z; is true.

Before we start the construction of the clause components, we introduce a notation:
We say that two vertices v and w are linked with a purple edge if
(1) There is no edge between u and w.
(2) The smaller connectivity component of G'\ {u,w} (called purple component) con-
sists of four vertices: v, v5", vy and vi".
(3) The v vertices form a cycle in this order.
(4) The vertices v and w are connected only to vi*.
(See Figure 1.)
This is a very useful structure because if G is the union of two trees, then they both
have to enter this purple component since a tree cannot contain a cycle. So if the
vertices are linked with a purple edge and E(G) = E(T)UE(F) (where T and F de-
note the two trees), then it means that v € V(T') and w € V(F) or u € V(F) and
w € V(T) (or maybe both).

Figure 1. A purple edge.

A clause component C; consists of 3k vertices where k is the size of the jth clause
whose literals are denoted by l{, ey li. A cycle of length 2k is formed by the follow-
ing vertices in this order: p{, q{,p‘;, q%, . .pf;, qi. The other k vertices are denoted by
.. ri The vertex 7 is always connected to p/ and it is also connected to vy, if
17 is x,, or to Ty, if I/ is T,,. Furthermore, there is a purple edge between 7/ and ¢’.
This will ensure that a tree coming in to the clause circle through a rg, cannot ,,go
out”. (See Figure 2. for a graph with one clause. The dashed edges mean purple edges.)
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Figure 2. The graph with the jth clause what is Ty, x5, T3.

We are ready with the construction, now we have to prove that it is correct. The
easier part is to show that if our NOT-ALL-EQUAL SAT problem has a good eval-
uation, then we have two trees, T" and F. First let us fix a good evaluation. Let the
tree T' contain the path from « to w through the v;s for true x;s and through the v;s
for false x;s. Similarly F' trails from « to w through the v;s for true x;s and through
the v;s for false z;s. If a tree contains v; (or 7;), let it also contain the path to the
proper p? if x; (or Z;) is in the jth clause. This way both trees enter each clause circle
since the evaluation satisfied our NOT-ALL-EQUAL SAT problem. Let the two edges
from p! to p{H belong to the tree that does not contain 7. This guarantees that we
have no problem with the purple edges and one can easily see that the trees remain
connected. So we are done with this part.

To prove the other part, let us suppose that G = TUF. We know that v, or
vy € V(T), otherwise F' would contain the whole Ly component and thus have a
cycle. We can suppose a € V(T'). We can also suppose w € V(F'). Let us direct all
the edges of the trees away from here. Similarly, we can suppose w € V(T') and V(F)).
Now some basic observations.

Proposition 1. There are no edges coming out of the purple components.

Proof. Both trees have to enter each purple component since a tree cannot contain a
cycle and since there are only two edges connecting a purple component to the rest
of the graph, both of them must be directed toward the purple component. O

This means that the trees cannot go through purple edges.
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Proposition 2. There are no edges coming out of the clause components.

Proof. Let us suppose that the edge from rf going to some vy, (Or Uy, ) is directed away
from 7] and is in 7. This implies p}r] € T as well because T' cannot enter r} through
the purple edge. But because ] ¢ V(F), therefore ¢/,, € V(F) since they are linked
with a purple edge, so 7" must have entered p{ from the direction of pg_l through qf_l.
But then ¢/, ¢ V(F), sor)_, € V(F). This means T entered p} , from the direction

of pf_Q. And we can go on so until we get back to pf, what gives a contradiction. [J

So now we know that the clauses are dead ends as well as the purple components.
Since T trails from « to w, it must contain v; or T, for each ¢. Similarly v; or T; € V(F).
Moreover, for 1 < i < n, no v; or v; can be contained in both because it would destroy
the connectivity of one of the trees. So we can define x; to be true if v; € V(T'). Now
the only thing left to show is that the literals in the clauses are not equal. But if they
were, then the C; component of the clause would be connected to only one of the trees
and hence that tree would contain a circle, contradiction. So we have shown that each
tree partition yields a proper evaluation. []

Now we give an estimation on the maximum degree of the graph that we con-
structed. Clearly all the vertices, except the v;s and 7;s, can have at most four edges. A
v; (or T;) has degree equal to two plus the occurances of the literal it belongs to. But a
NOT-ALL-EQUAL SAT problem is easily reducible to a NOT-ALL-EQUAL SAT-(2;2)
problem (meaning that each literal can occur at most twice). If a literal [ would occur
in at least three clauses, then let us execute the following operation until we have at
most two of each literal: Replace (C4,1), (Cs, 1), (Cs,1) with (1,Z), (C1,1), (Cs, 2), (Cs, 2)
where z is a new variable. Therefore the decision of whether a simple graph is the
disjoint union of two trees or not is NP-complete even for graphs with maximum
degree four.
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