Left Compressed Shadows

Pálvölgyi Dömötör

July 4, 2005

In this article we present a new proof for the forty years old KruskalKatona theorem. This was first proved by J. B. Kruskal in 1963 [6], and later, independently by G. Katona in 1966 [5]. Since then several new proofs were made, the last by R. Ahlswede et. al in 2003 [1]. The shifting technique that we use was first applied in an article of P. Erdős, C. Ko and R. Rado in 1961 [2]. The connections between shifts and shadows was discovered by G. Katona in 1964 [4], this is the method we improved in this article.

I would like to thank G. Katona his advices.
The problem that we are trying to solve is the following: On a finite set S we have a k-uniform family of sets \mathcal{F}. (So each element of \mathcal{F} has cardinality k.) Let the shadow of a set F or a family of sets \mathcal{F} be the following family of sets:

$$
\begin{aligned}
\sigma(F):= & \{G: G \subset F,|G|=k-1\} \\
& \sigma(\mathcal{F}):=\{\sigma(F): F \in \mathcal{F}\}
\end{aligned}
$$

The question is at least how big the shadow $(|\sigma(\mathcal{F})|)$ has to be if the size of the family $(|\mathcal{F}|)$ is fixed. Before we state the main theorem, we introduce some notations to enhance our vocabulary.

Let us fix an arbitrary ordering < of the elements of the set S. Let us denote the smallest element of the set H by $\min (H)$ and the largest by $\max (H)$. The ordering < can be naturally extended to the subsets of S that have the same cardinality: $F<G \Leftrightarrow \max (F \backslash G)<\max (G \backslash F)$. We denote the smallest element of the family \mathcal{H} by $\operatorname{Min}(\mathcal{H})$ and the largest by $\operatorname{Max}(\mathcal{H})$. Now we can extend again this ordering to the subsets of $\mathcal{P}(S)$ that have the
same cardinality and are k-uniform: $\mathcal{F}<\mathcal{G} \Leftrightarrow \operatorname{Max}(\mathcal{F} \backslash \mathcal{G})<\operatorname{Max}(\mathcal{G} \backslash \mathcal{F})$. we are going to denote the k element subsets of a set H by $\binom{H}{k}$. Now we can ask our original question using this language:
At least how big is the shadow of an element of $\left(\begin{array}{c}\left(\begin{array}{c}S \\ k \\ \mid \mathcal{F}\end{array}\right)\end{array}\right)$?
Theorem. (Kruskal-Katona) $|\sigma(\mathcal{F})| \geq \left\lvert\, \sigma\left(\left.\operatorname{Min}\left(\begin{array}{c}\left(\begin{array}{c}S \\ k \\ |\mathcal{F}|\end{array}\right)\end{array}\right) \right\rvert\,\right.$. \right.
In other words, the theorem claims that among the k-uniform, fixed cardinality families the smallest one (considering the above defined ordering) has a shadow thats size is minimal. Computing the size of this shadow we get the following lower bound:

Corollary. (Kruskal-Katona) Let $|\mathcal{F}|=\binom{a_{k}}{k}+\ldots+\binom{a_{t}}{t}$ where $a_{k}>\ldots>$ $a_{t} \geq t \geq 1$. (It is well-known that every positive integer can be written in such form.) In this case $|\sigma(\mathcal{F})| \geq\binom{ a_{k}}{k-1}+\ldots+\binom{a_{t}}{t-1}$.

Proof. This follows from the previous theorem and from the easy-to-see $\left|\sigma\left(\operatorname{Min}\binom{\binom{S}{k}}{|\mathcal{F}|}\right)\right|=\binom{a_{k}}{k-1}+\ldots+\binom{a_{t}}{t-1}$ equality.

The key of the proof of the theorem is an operation called left-shift. (Earlier the operation that we are going to call 1-left-shift was called left-shift.)

Definition. Let $\mathcal{F} \subseteq\binom{S}{k}, X, Y \subseteq S,|X|=|Y| \geq 0, X \cap Y=\emptyset, X>Y$. The (X, Y)-left-shift of \mathcal{F} is

$$
\begin{aligned}
\tau_{X, Y}(F):= \begin{cases}F \backslash X \cup Y & \text { if } X \subseteq F \text { and } Y \cap F=\emptyset \\
F & \text { otherwise }\end{cases} \\
\tau_{X, Y}(\mathcal{F}):=\left\{\tau_{X, Y}(F): F \in \mathcal{F}, \tau_{X, Y}(F) \notin \mathcal{F}\right\} \cup\left\{F: F \in \mathcal{F}, \tau_{X, Y}(F) \in \mathcal{F}\right\} .
\end{aligned}
$$

A left-shift is an l-left-shift if $|X|=l$. A family \mathcal{F} is l-left-compressed if for any τ l-left-shift $\tau(\mathcal{F})=\mathcal{F}$.
(If $l=0$, nothing happens, this was only introduced to simplify notations. Note that every family is 0 -left-compressed.)

So the left-shift of a family is another family of the same cardinality with elements of the same size (hence $\tau_{X, Y}:\left(\begin{array}{c}\left(\begin{array}{c}S \\ k \\ f\end{array}\right)\end{array}\right) \rightarrow\binom{\binom{S}{k}}{f}$ function where k and f are arbitrary). Further on because of $X>Y$ we have $\tau_{X, Y}(\mathcal{F}) \leq \mathcal{F}$. We can also observe that if \mathcal{F} is not minimal in $\left(\begin{array}{c}\left(\begin{array}{c}S \\ k \\ |\mathcal{F}|\end{array}\right)\end{array}\right)$ considering our ordering,
then there exists a suitable $\tau_{X, Y}$ left-shift that does not leave \mathcal{F} fix; to show such a left-shift, we only have to guarantee that an element of \mathcal{F} will perish during the left-shift: Let $\mathcal{G} \in\left(\begin{array}{c}\left(\begin{array}{c}S \\ k \\ \mid \mathcal{F}\end{array}\right)\end{array}\right), \mathcal{G}<\mathcal{F}$. Because of the definition of the ordering there exists $G \in \mathcal{G} \backslash \mathcal{F}, F \in \mathcal{F} \backslash \mathcal{G}$ for which $G<F$. Now $F \notin \tau_{F \backslash G, G \backslash F}(\mathcal{F})$, therefore \mathcal{F} does not stay fix during this left-shift. Because of our first remark it can only decrease (considering our ordering). Therefore we have proved that there is only one family (thats cardinality is f and that is k-uniform) that is l-left-compressed for every $1 \leq l \leq k$ and it is the one that is the smallest considering our ordering.

Now we are going to show that during an l-left-shift the shadow can never increase if our family was $(l-1)$-left-compressed before the left-shift.

Lemma. If \mathcal{F} is $(l-1)$-left-compressed $(1 \leq l \leq k)$ and $X, Y \in\binom{S}{l}, X \cap Y=$ $\emptyset, \max (X)>\max (Y)$, then $\left|\sigma\left(\tau_{X, Y}(\mathcal{F})\right)\right| \leq|\sigma(\mathcal{F})|$.
Proof. $\mathcal{B}:=\sigma\left(\tau_{X, Y}(\mathcal{F})\right) \backslash \sigma(\mathcal{F})$, so it denotes the shades that were created during the left-shift. $\mathcal{A}:=\sigma(\mathcal{F}) \backslash \sigma\left(\tau_{X, Y}(\mathcal{F})\right)$, the shades that were eliminated during the left-shift. We need to show a $\mathcal{B} \rightarrow \mathcal{A}$ injective function φ, this would imply that at most as many shades were created as many were eliminated, hence the shadow of the family did not increase. To every shade $B \in \mathcal{B}$ we will associate a $\varphi(B) \in \mathcal{A}$.

We know that for every $T \in \tau_{X, Y}(\mathcal{F}) \backslash \mathcal{F}$ we have $X \cap T=\emptyset$ and $Y \subseteq T$ because during the shift from the ancestor of T we left X and added Y to it. For every $B \in \mathcal{B}$ there is a $T \in \tau_{X, Y}(\mathcal{F}) \backslash \mathcal{F}$ such that $B=\sigma(T)$, so B is the shade of T. This implies for every $B \in \mathcal{B}$ that $B \cap X=\emptyset,|B \cap Y| \geq l-1$.

For the sake of simplicity we write $\{z\}$ instead of z in case of sets with only one element. Let $K=B \backslash Y$.
Claim. $|B \cap Y|=l$.
Proof. Let us suppose that it is not true and $Y \backslash B=y$. Now B can only be the shade of $K \cup Y \in \tau_{X, Y}(\mathcal{F}) \backslash \mathcal{F}$. Therefore the ancestor of $K \cup Y$ was in the family before the shift, so $K \cup X \in \mathcal{F}$. But in this case $F:=\tau_{X \backslash \min (X), Y \backslash y}(K \cup$ $X) \in \mathcal{F}$ because the original family was $(l-1)$-left-compressed. (Note that $\tau_{X \backslash \min (X), Y \backslash y}$ is indeed an $(l-1)$-left-shift because $X \backslash \min (X)>Y \backslash y$ follows from $X>Y$.) Now $B \in \sigma(F)$ contradicts $B \in \mathcal{B}$, this completes our indirect proof.

The claim obviously implies $B=K \cup Y$. Now our function φ can be defined, $A:=\varphi(B):=K \cup X .(K \cap X=\emptyset$, because $B \cap X=\emptyset$. $)$ This
is injective because B determines K and thus $K \cup X$ as well. $B \in \mathcal{B}$ implies that the set thats shadow contains B, was created during the shift, and this implies that the shadow of the ancestor of this set contains A, therefore $A \in \sigma(\mathcal{F})$. We need to show that $A \in \mathcal{A}$, so the only possibly problem is if $A \in \sigma\left(\tau_{X, Y}(\mathcal{F})\right)$, that means $A=\sigma(U)$ where $U \in \tau_{X, Y}(\mathcal{F})$. Now obviously $U \in \mathcal{F}$, in other words U was not created during the shift because $X \subseteq A \subseteq U$. We distinguish two cases:

1. case: $U=A \cup z$ where $z \notin Y$. This implies $\tau_{X, Y}(U) \in \mathcal{F}$, otherwise U would be eliminated during the left-shift. But in this case $B \in \sigma\left(\tau_{X, Y}(U)\right)$ contradicts $B \in \mathcal{B}$.
2. case: $U=A \cup y$ where $y \in Y$. This implies $F:=\tau_{X \backslash \min (X), Y \backslash y}(U) \in \mathcal{F}$ because of the $(l-1)$-left-compressedness of the original family. Here $F=$ $K \cup Y \cup \min (X)$, thus $B \in \sigma(F)$ but this contradicts $B \in \mathcal{B}$.

This completes the proof of the lemma.
Now we can easily prove the theorem: Let us choose a family \mathcal{F} thats shadow is minimal and is the smallest (considering our ordering) among these families. Let us suppose indirectly that $\mathcal{F} \neq \operatorname{Min}\left(\begin{array}{c}\left(\begin{array}{c}S \\ \mid \mathcal{F} \\ |\mathcal{F}|\end{array}\right)\end{array}\right)$. We know that there exists an $1 \leq l \leq k$ such that \mathcal{F} is not l-left-compressed, so there exist $X, Y \in\binom{S}{l}, X \cap Y=\emptyset, \max (X)>\max (Y)$ such that $\tau_{X, Y}(\mathcal{F})<\mathcal{F}$. Let us apply the lemma for the smallest l with this desired property (the minimality ensures the condition of ($l-1$)-left-compressedness). Applying the shift $\tau_{X, Y}$ the shadow does not increase while the family becomes smaller (considering our ordering), thus it could not have been the smallest before the shift. $\sqrt{ }$

References

[1] R. Ahlswede, H. Aydinian and L. H. Khachatrian, More about shifting techniques, European Journal of Combinatorics, 24 (2003) 551-556.
[2] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Set., 212 (1961), 313-320.
[3] P. Frankl, The shifting technique in extremal set theory, Combinatorial Surveys. (C. Whitehead, ed.), Cambridge Univ. Press, London/New York, 1987, 81-110.
[4] Gy. Katona, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hungar. 15(1964) 329-337.
[5] Gy. Katona, A theorem for finite sets, Theory of Graphs (P. Erdős and Gy. Katona, eds.), Hungarian Academy of Sciences, Budapest, 1966, 187-207.
[6] J. B. Kruskal, The number of simplices in a complex, Mathematical Optimization Techniques (R. Bellman, ed.), University of California Press, Berkeley, 1963, 251-278.

