
Left Compressed Shadows

Pálvölgyi Dömötör

July 4, 2005

In this article we present a new proof for the forty years old Kruskal-
Katona theorem. This was �rst proved by J. B. Kruskal in 1963 [6], and
later, independently by G. Katona in 1966 [5]. Since then several new proofs
were made, the last by R. Ahlswede et. al in 2003 [1]. The shifting technique
that we use was �rst applied in an article of P. Erd®s, C. Ko and R. Rado in
1961 [2]. The connections between shifts and shadows was discovered by G.
Katona in 1964 [4], this is the method we improved in this article.

I would like to thank G. Katona his advices.

The problem that we are trying to solve is the following: On a �nite set S
we have a k-uniform family of sets F . (So each element of F has cardinality
k.) Let the shadow of a set F or a family of sets F be the following family
of sets:

σ(F ) := {G : G ⊂ F, |G| = k − 1}
σ(F) := {σ(F ) : F ∈ F}

The question is at least how big the shadow (|σ(F)|) has to be if the size
of the family (|F|) is �xed. Before we state the main theorem, we introduce
some notations to enhance our vocabulary.

Let us �x an arbitrary ordering < of the elements of the set S. Let
us denote the smallest element of the set H by min(H) and the largest by
max(H). The ordering < can be naturally extended to the subsets of S that
have the same cardinality: F < G ⇔ max(F \G) < max(G\F ). We denote
the smallest element of the family H by Min(H) and the largest by Max(H).
Now we can extend again this ordering to the subsets of P(S) that have the
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same cardinality and are k-uniform: F < G ⇔ Max(F \ G) < Max(G \ F).
we are going to denote the k element subsets of a set H by

(
H
k

)
. Now we can

ask our original question using this language:

At least how big is the shadow of an element of
((S

k)
|F|

)
?

Theorem. (Kruskal-Katona) |σ(F)| ≥ |σ(Min
((S

k)
|F|

)
)|.

In other words, the theorem claims that among the k-uniform, �xed car-
dinality families the smallest one (considering the above de�ned ordering)
has a shadow thats size is minimal. Computing the size of this shadow we
get the following lower bound:

Corollary. (Kruskal-Katona) Let |F| =
(

ak

k

)
+ . . . +

(
at

t

)
where ak > . . . >

at ≥ t ≥ 1. (It is well-known that every positive integer can be written in
such form.) In this case |σ(F)| ≥

(
ak

k−1

)
+ . . . +

(
at

t−1

)
.

Proof. This follows from the previous theorem and from the easy-to-see

|σ(Min
((S

k)
|F|

)
)| =

(
ak

k−1

)
+ . . . +

(
at

t−1

)
equality.

The key of the proof of the theorem is an operation called left-shift. (Ear-
lier the operation that we are going to call 1-left-shift was called left-shift.)

De�nition. Let F ⊆
(

S
k

)
, X, Y ⊆ S, |X| = |Y | ≥ 0, X ∩ Y = ∅, X > Y .

The (X, Y )-left-shift of F is

τX,Y (F ) := { F \X ∪ Y if X ⊆ F and Y ∩ F = ∅
F otherwise

,

τX,Y (F) := {τX,Y (F ) : F ∈ F , τX,Y (F ) /∈ F} ∪ {F : F ∈ F , τX,Y (F ) ∈ F}.

A left-shift is an l-left-shift if |X| = l.
A family F is l-left-compressed if for any τ l-left-shift τ(F) = F .

(If l = 0, nothing happens, this was only introduced to simplify notations.
Note that every family is 0-left-compressed.)

So the left-shift of a family is another family of the same cardinality with

elements of the same size (hence τX,Y :
((S

k)
f

)
→

((S
k)
f

)
function where k and

f are arbitrary). Further on because of X > Y we have τX,Y (F) ≤ F . We

can also observe that if F is not minimal in
((S

k)
|F|

)
considering our ordering,
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then there exists a suitable τX,Y left-shift that does not leave F �x; to show
such a left-shift, we only have to guarantee that an element of F will per-

ish during the left-shift: Let G ∈
((S

k)
|F|

)
, G < F . Because of the de�nition

of the ordering there exists G ∈ G \ F , F ∈ F \ G for which G < F . Now
F /∈ τF\G,G\F (F), therefore F does not stay �x during this left-shift. Because
of our �rst remark it can only decrease (considering our ordering). Therefore
we have proved that there is only one family (thats cardinality is f and that
is k-uniform) that is l-left-compressed for every 1 ≤ l ≤ k and it is the one
that is the smallest considering our ordering.

Now we are going to show that during an l-left-shift the shadow can never
increase if our family was (l − 1)-left-compressed before the left-shift.

Lemma. If F is (l−1)-left-compressed (1 ≤ l ≤ k) and X, Y ∈
(

S
l

)
, X∩Y =

∅, max(X) > max(Y ), then |σ(τX,Y (F))| ≤ |σ(F)|.

Proof. B := σ(τX,Y (F)) \ σ(F), so it denotes the shades that were created
during the left-shift. A := σ(F) \ σ(τX,Y (F)), the shades that were elimi-
nated during the left-shift. We need to show a B → A injective function ϕ,
this would imply that at most as many shades were created as many were
eliminated, hence the shadow of the family did not increase. To every shade
B ∈ B we will associate a ϕ(B) ∈ A.

We know that for every T ∈ τX,Y (F) \ F we have X ∩ T = ∅ and Y ⊆ T
because during the shift from the ancestor of T we left X and added Y to
it. For every B ∈ B there is a T ∈ τX,Y (F) \ F such that B = σ(T ), so B is
the shade of T . This implies for every B ∈ B that B∩X = ∅, |B∩Y | ≥ l−1.

For the sake of simplicity we write {z} instead of z in case of sets with
only one element. Let K = B \ Y .

Claim. |B ∩ Y | = l.

Proof. Let us suppose that it is not true and Y \B = y. Now B can only be
the shade of K∪Y ∈ τX,Y (F)\F . Therefore the ancestor of K∪Y was in the
family before the shift, so K∪X ∈ F . But in this case F := τX\min(X),Y \y(K∪
X) ∈ F because the original family was (l − 1)-left-compressed. (Note that
τX\min(X),Y \y is indeed an (l−1)-left-shift because X \min(X) > Y \y follows
from X > Y .) Now B ∈ σ(F ) contradicts B ∈ B, this completes our indirect
proof.

The claim obviously implies B = K ∪ Y . Now our function ϕ can be
de�ned, A := ϕ(B) := K ∪ X. (K ∩ X = ∅, because B ∩ X = ∅.) This
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is injective because B determines K and thus K ∪ X as well. B ∈ B im-
plies that the set thats shadow contains B, was created during the shift, and
this implies that the shadow of the ancestor of this set contains A, therefore
A ∈ σ(F). We need to show that A ∈ A, so the only possibly problem is
if A ∈ σ(τX,Y (F)), that means A = σ(U) where U ∈ τX,Y (F). Now ob-
viously U ∈ F , in other words U was not created during the shift because
X ⊆ A ⊆ U . We distinguish two cases:

1. case: U = A∪ z where z /∈ Y . This implies τX,Y (U) ∈ F , otherwise U
would be eliminated during the left-shift. But in this case B ∈ σ(τX,Y (U))
contradicts B ∈ B.

2. case: U = A∪y where y ∈ Y . This implies F := τX\min(X),Y \y(U) ∈ F
because of the (l − 1)-left-compressedness of the original family. Here F =
K ∪ Y ∪min(X), thus B ∈ σ(F ) but this contradicts B ∈ B.

This completes the proof of the lemma.

Now we can easily prove the theorem: Let us choose a family F thats
shadow is minimal and is the smallest (considering our ordering) among these

families. Let us suppose indirectly that F 6= Min
((S

k)
|F|

)
. We know that there

exists an 1 ≤ l ≤ k such that F is not l-left-compressed, so there exist
X, Y ∈

(
S
l

)
, X ∩ Y = ∅, max(X) > max(Y ) such that τX,Y (F) < F . Let us

apply the lemma for the smallest l with this desired property (the minimality
ensures the condition of (l−1)-left-compressedness). Applying the shift τX,Y

the shadow does not increase while the family becomes smaller (considering
our ordering), thus it could not have been the smallest before the shift.

√
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