
Drawing planar graphs of bounded degreewith few slopesBalázs Keszegh∗ János Pah† Dömötör Pálvölgyi ‡September 23, 2010AbstratWe settle a problem of Dujmovi¢, Eppstein, Suderman, and Wood by showing that there existsa funtion f with the property that every planar graph G with maximum degree d admits a drawingwith nonrossing straight-line edges, using at most f(d) di�erent slopes. If we allow the edges tobe represented by polygonal paths with one bend, then 2d slopes su�e. Allowing two bends peredge, every planar graph with maximum degree d ≥ 3 an be drawn using segments of at most
⌈d/2⌉ di�erent slopes. There is only one exeption: the graph formed by the edges of an otahedronis 4-regular, yet it requires 3 slopes. These bounds annot be improved.1 IntrodutionA planar layout of a graph G is alled a drawing if the verties of G are represented by distintpoints in the plane and every edge is represented by a ontinuous ar onneting the orresponding pairof points and not passing through any other point representing a vertex [3℄. If it leads to no onfusion,in notation and terminology we make no distintion between a vertex and the orresponding point andbetween an edge and the orresponding ar. If the edges are represented by line segments, the drawingis alled a straight-line drawing. The slope of an edge in a straight-line drawing is the slope of theorresponding segment.In this paper, we will be onerned with drawings of planar graphs. Unless it is stated otherwise,all drawings will be nonrossing, that is, no two ars that represent di�erent edges have an interiorpoint in ommon.Every planar graph admits a straight-line drawing [9℄. From the pratial and aesthetial point ofview, it makes sense to minimize the number of slopes we use [24℄. The planar slope number of a planargraph G is the smallest number s with the property that G has a straight-line drawing with edges ofat most s distint slopes. If G has a vertex of degree d, then its planar slope number is at least ⌈d/2⌉,beause in a straight-line drawing no two edges are allowed to overlap.Dujmovi¢, Eppstein, Suderman, and Wood [4℄ raised the question whether there exists a funtion

f with the property that the planar slope number of every planar graph with maximum degree d anbe bounded from above by f(d). Jelinek et al. [13℄ have shown that the answer is yes for outerplanargraphs, that is, for planar graphs that an be drawn so that all of their verties lie on the outer fae.In Setion 2, we answer this question in full generality. We prove the following.
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Theorem 1. Every planar graph with maximum degree d admits a straight-line drawing, using segmentsof O(d2(3 + 2
√
3)12d) ≤ Kd distint slopes.The proof is based on a paper of Malitz and Papakostas [18℄, who used Koebe's theorem [14℄ ondisk representations of planar graphs to prove the existene of drawings with relatively large angularresolution. As the proof of these theorems, our argument is nononstrutive; it only yields a nondeter-ministi algorithm with running time O(dn). However, if one ombines our result with a polynomialtime algorithm that omputes the ǫ-approximation of the disk representation (see e.g. Mohar [19℄),then one an obtain a deterministi algorithm running in time exponential in d but polynomial in n.For d = 3, muh stronger results are known than the one given by our theorem. Dujmovi¢ at al.[4℄ showed that every planar graph with maximum degree 3 admits a straight-line drawing using atmost 3 di�erent slopes, exept for at most 3 edges of the outer fae, whih may require 3 additionalslopes. This omplements Ungar's old theorem [23℄, aording to whih 3-regular, 4-edge-onnetedplanar graphs require only 2 slopes and 4 extra edges.The exponential upper bound in Theorem 1 is probably far from being optimal. However, we wereunable to give any superlinear lower bound for the largest planar slope number of a planar graph withmaximum degree d. The best onstrutions we are aware of are presented in Setion 5.It is perhaps somewhat surprising that if we do not restrit our attention to planar graphs, then noresult similar to Theorem 1 holds. For every d ≥ 5, Barát, Matou²ek, and Wood [1℄ and, independently,Pah and Pálvölgyi [21℄ onstruted graphs with maximum degree d with the property that no matterhow we draw them in the plane with (possibly rossing) straight-line edges, we must use an arbitrarilylarge number of slopes. (See also [5℄.) The ase d ≤ 3 is di�erent: Keszegh et al. [15℄ proved that everygraph with maximum degree 3 an be drawn with 5 slopes. Moreover, Mukkamala and Szegedy [20℄showed that 4 slopes su�e if the graph is onneted. The ase d = 4 remains open.Returning to planar graphs, we show that signi�antly fewer slopes are su�ient if we are allowedto represent the edges by short nonrossing polygonal paths. If suh a path onsists of k+1 segments,we say that the edge is drawn by k bends. In Setion 3, we show if we allow one bend per edge, thenevery planar graph an be drawn using segments with O(d) slopes.Theorem 2. Every planar graph G with maximum degree d an be drawn with at most 1 bend per edge,using at most 2d slopes.Allowing two bends per edge yields an optimal result: almost all planar graphs with maximumdegree d an be drawn with ⌈d/2⌉ slopes. In Setion 4, we establishTheorem 3. Every planar graph G with maximum degree d ≥ 3 an be drawn with at most 2 bendsper edge, using segments of at most ⌈d/2⌉ distint slopes. The only exeption is the graph formed bythe edges of an otahedron, whih is 4-regular, but requires 3 slopes. These bounds are best possible.It follows from the proof of Theorem 3 that in the yli order of diretions, the slopes of theedges inident to any given vertex form a ontiguous interval. Moreover, the ⌈d/2⌉ diretions we usean be hosen to be equally spaed in [0, 2π). We were unable to guarantee suh a nie property inTheorem 2: even for a �xed d, as the number of verties inreases, the smallest di�erene between the

2d− 2 slopes we used tends to zero. We suspet that this property is only an unpleasant artifat of ourproof tehnique.2 Straight-line drawings�Proof of Theorem 1Note that it is su�ient to prove the theorem for triangulated planar graphs, beause any planargraph an be triangulated by adding verties and edges so that the degree of eah vertex inreases onlyby a fator of at most three [22℄, so at the end we will lose this fator.2



We need the following result from [18℄, whih is not displayed as a theorem there, but is statedright above Theorem 2.2.Lemma 4. (Malitz-Papakostas) The verties of any triangulated planar graph G with maximum degree
d an be represented by nonoverlapping disks in the plane so that two disks are tangent to eah other ifand only if the orresponding verties are adjaent, and the ratio of the radii of any two disks that aretangent to eah other is at least αd−2, where α = 1

3+2
√
3
≈ 0.15.Lemma 4 an be established by taking any representation of the verties of G by tangent disks, asguaranteed by Koebe's theorem, and applying a onformal mapping to the plane that takes the disksorresponding to the three verties of the outer fae to disks of the same radii. The lemma now followsby the observation that any internal disk is surrounded by a ring of at most d mutually touhing disks,and the radius of none of them an be muh smaller than that of the entral disk.The idea of the proof of Theorem 1 is as follows. Let G be a triangulated planar graph withmaximum degree d, and denote its verties by v1, v2, . . .. Consider a disk representation of G meetingthe requirements of Lemma 4. Let Di denote the disk that represents vi, and let Oi be the enter of Di.By properly saling the piture if neessary, we an assume without loss of generality that the radiusof the smallest disk Di is su�iently large. Plae an integer grid on the plane, and replae eah enter

Oi by the nearest grid point. Conneting the orresponding pairs of grid points by segments, we obtaina straight-line drawing of G. The advantage of using a grid is that in this way we have ontrol of theslopes of the edges. The trouble is that the size of the grid, and thus the number of slopes used, is verylarge. Therefore, in the neighborhood of eah disk Di, we use a portion of a grid whose side length isproportional to the radius of the disk. These grids will niely �t together, and eah edge will onnettwo nearby points belonging to grids of omparable sizes. Hene, the number of slopes used will bebounded. See Figure 1.Now we work out the details. Let ri denote the radius of Di (i = 1, 2 . . .), and suppose without lossof generality that r∗, the radius of the smallest disk is
r∗ = miniri =

√
2/αd−2 > 1,where α denotes the same onstant as in Lemma 4.Let si = ⌊logd(ri/r∗)⌋ ≥ 0, and represent eah vertex vi by the integer point nearest to Oi suhthat both of its oordinates are divisible by dsi . (Taking a oordinate system in general position, wean make sure that this point is unique.) For simpliity, the point representing vi will also be denotedby vi. Obviously, we have that the distane between Oi and vi satis�es

Oivi <
dsi√
2
.Sine the enters Oi of the disks indue a (rossing-free) straight-line drawing of G, in order toprove that moving the verties to vi does not reate a rossing, it is su�ient to verify the followingstatement.Lemma 5. For any three mutually adjaent verties, vi, vj , vk in G, the orientation of the triangles

OiOjOk and vivjvk are the same.Proof. By Lemma 4, the ratio between the radii of any two adjaent disks is at least αd−2. Supposewithout loss of generality that ri ≥ rj ≥ rk ≥ αd−2ri. For the orientation to hange, at least one of
Oivi, Ojvj , or Okvk must be at least half of the smallest altitude of the triangle OiOjOk, whih is atleast rk
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Figure 1: Straight-line graph from disk representationOn the other hand, as we have seen before, eah of these numbers is smaller than
dsi√
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2whih ompletes the proof.Now we are ready to omplete the proof of Theorem 1. Take an edge vivj ofG, with ri ≥ rj ≥ αd−2ri.The length of this edge an be bounded from above by
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2).Aording to our onstrution, the oordinates of vj are integers divisible by dsj , and the oordinatesof vi are integers divisible by dsi ≥ dsj , thus also by dsj .Thus, shrinking the edge vivj by a fator of dsj , we obtain a segment whose endpoints are integerpoints at a distane at most d

αd−2 (
2
√
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√
2). Denoting this number by R(d), we obtain that thenumber of possible slopes for vivj , and hene for any other edge in the embedding, annot exeed thenumber of integer points in a disk of radius R(d) around the origin. Thus, the planar slope number of4



any triangulated planar graph of maximum degree d is at most roughly R2(d)π = O(d2/α4d), whihompletes the proof. �Our proof is based on the result of Malitz and Papakostas that does not have an algorithmi version.However, with some reverse engineering, we an obtain a nondeterministi algorithm for drawing atriangulated planar graph of bounded degree with a bounded number of slopes. Beause of the enormousonstants in our expressions, this algorithm is only of theoretial interest. Here is a brief sketh.Nondeterministi algorithm. First, we guess the three verties of the outer fae and their oordinatesin the grid saled aording to their radii. Then embed the remaining verties one by one. For eahvertex, we guess the radius of the orresponding disk as well as its oordinates in the proportionallysaled grid. This algorithm runs in nondeterministi O(dn) time.3 One bend per edge�Proof of Theorem 2In this setion, we represent edges by nonrossing polygonal paths, eah onsisting of at most twosegments. Our goal is to establish Theorem 2, whih states that the total number of diretions assumedby these segments grows at most linearly in d.The proof of Theorem 2 is based on a result of Fraysseix et al. [10℄, aording to whih everyplanar graph an be represented as a ontat graph of T -shapes. A T -shape onsists of a vertial anda horizontal segment suh that the upper endpoint of the vertial segment lies in the interior of thehorizontal segment. The vertial and horizontal segments of T are alled its leg and hat, while theirpoint of intersetion is the enter of the T -shape. The two endpoints of the hat and the bottom endpointof the leg are alled ends of the T -shape.Two T -shapes are nonrossing if the interiors of their segments are disjoint. Two T -shapes aretangent to eah other if they are nonrossing but they have a point in ommon.Lemma 6. (Fraysseix et al.) The verties of any planar graph with n verties an be represented bynonrossing T -shapes suh that1. two T -shapes are tangent to eah other if and only if the orresponding verties are adjaent;2. the enters and the ends of the T -shapes belong to an n× n grid.Moreover, suh a representation an be omputed in linear time.The proof of the lemma is based on the anonial ordering of the verties of a planar graph,introdued in [11℄.Proof of Theorem 2. Consider a representation ofG by T -shapes satisfying the onditions in the lemma.See Figure 2(a). For any v ∈ V (G), let Tv denote the orresponding T -shape. We de�ne a drawing of
G, in whih the vertex v is mapped to the enter of Tv. To simplify the presentation, the enter of
Tv is also denoted by v. For any uv ∈ E(G), let puv denote the point of tangeny of Tu and Tv. Thepolygonal path upuvv onsists of a horizontal and a vertial segment, and these paths together almostform a drawing of G with one bend per edge, using segments of two di�erent slopes. The only problemis that these paths partially overlap in the neighborhoods of their endpoints. Therefore, we modifythem by replaing their horizontal and vertial piees by almost horizontal and almost vertial ones,as follows.For any 1 ≤ i ≤ d, let αi denote the slope of the (almost horizontal) line onneting the origin
(0, 0) to the point (2in,−1). Analogously, let βi denote the slope of the (almost vertial) line passingthrough (0, 0) and (1, 2in). 5



Fix a T -shape Tv in the representation of G. It is tangent to at most d other T -shapes. Starting atits enter v, let us pass around Tv in the ounterlokwise diretion, so that we �rst visit the upper leftside of its hat, then its lower left side, then the left side and right side of its leg, et. We number thepoints of tangenies along Tv in this order. (Note that there are no points of tangenies on the lowerside of the hat.)Suppose now that the hat of a T -shape Tu is tangent to the leg of Tv, and let puv be their pointof tangeny. Assume that puv was the number i point of tangeny along Tu and the number j pointof tangeny along Tv. Let p′uv denote the unique point of intersetion of the (almost horizontal) linethrough u with slope αi and the (almost vertial) line through v with slope βj . In our drawing of G,the edge uv will be represented by the polygonal path up′uvv. See Figure 2() for the resulting drawingand Figure 2(b) for a version distorted for the human eye to show the underlying struture.
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()Figure 2: Representation with T -shapes and the drawing with one bend per edgeSine the segments we used are almost horizontal or vertial, the modi�ed edges up′uvv are verylose (within distane 1/2) of the original polygonal paths upuvv. Thus, no two nonadjaent edges anross eah other. On the other hand, the order in whih we piked the slopes around eah v guaranteesthat no two edges inident to v will ross or overlap. This ompletes the proof.4 Two bends per edge�Proof of Theorem 3In this setion, we draw the edges of a planar graph by polygonal paths with at most two bends.Our aim is to establish Theorem 3.Note that the statement is trivially true for d = 1 and is false for d = 2. It is su�ient to proveTheorem 3 for even values of d. For d = 4, the assertion was �rst proved by Liu et al. [17℄ and later,independently, by Biedl and Kant [2℄ (also that the only exeption is the otahedral graph). The latterapproah is based on the notion of st-ordering of bionneted (2-onneted) graphs from Lempel et al.[16℄. We will show that this method generalizes to higher values of d ≥ 5. As it is su�ient to provethe statement for even values of d, from now on we suppose that d ≥ 6 even. We will argue that it isenough to onsider bionneted graphs. Then we review some ruial laims from [2℄ that will enableus to omplete the proof. We start with some notation.Take d ≥ 5 lines that an be obtained from a vertial line by lokwise rotation by 0, π/d, 2π/d,
. . . , (d − 1)π/d degrees. Their slopes are alled the d regular slopes. We will use these slopes to draw
G. Sine these slopes depend only on d and not on G, it is enough to prove the theorem for onnetedgraphs. If a graph is not onneted, its omponents an be drawn separately.6



In this setion we always use the term �slope� to mean a regular slope. The direted slope of adireted line or segment is de�ned as the angle (mod 2π) of a lokwise rotation that takes it to aposition parallel to the upward direted y-axis. Thus, if the direted slopes of two segments di�er by
π, then they have the same slope. We say that the slopes of the segments inident to a point p forma ontiguous interval if the set ~S ⊂ {0, π/d, 2π/d, . . . , (2d − 1)π/d} of direted slopes of the segmentsdireted away from p, has the property that for all but at most one α ∈ ~S, we have that α + π/d
mod 2π ∈ ~S (see Figure 5).Finally, we say that G admits a good drawing if G has a planar drawing suh that every edge hasat most 2 bends, every segment of every edge has one of the ⌈d/2⌉ regular slopes, and the slopes of thesegments inident to any vertex form a ontiguous interval. If t is a vertex whose degree is at least twobut less than d, then we an de�ne the two extremal segments at t as the segments orresponding to theslopes at the two ends of the ontiguous interval formed by the slopes of all the segments inident to
t. Also de�ne the t-wedge as the in�nite one bounded by the extension of the two extremal segments,whih ontains all segments inident to t and none of the �missing� segments. See Figure 3. For a degreeone vertex t we de�ne the t-wedge as the in�nite one bounded by the extension of the rotations of thesegment inident to t around t by ±π/2d.
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(b)Figure 3: The t-wedgeTo prove Theorem 3, we show by indution that every onneted planar graph with maximumdegree d ≥ 6 with an arbitrary t vertex whose degree is stritly less than d admits a good drawing thatis ontained in the t-wedge. Note that suh a vertex always exist beause of Euler's polyhedral formula,thus Theorem 3 is indeed a diret onsequene of this statement. First we show how the indution stepgoes for graphs that have a ut vertex, then (after a lot of de�nitions) we prove the statement also forbionneted graphs (without the indution hypothesis).Lemma 7. Let G be a onneted planar graph of maximum degree d, let t ∈ V (G) be a vertex whosedegree is stritly smaller than d, and let v ∈ V (G) be a ut vertex. Suppose that for any onneted planargraph G′ of maximum degree d, whih has fewer than |V (G)| verties, and for any vertex t′ ∈ V (G′)whose degree is stritly smaller than d, there is a good drawing of G′ that is ontained in the t′-wedge.Then G also admits a good drawing that is ontained in the t-wedge.Proof. Let G1, G2, . . . denote the onneted omponents of the graph obtained from G after the removalof the ut vertex v, and let G∗
i be the subgraph of G indued by V (Gi) ∪ {v}.If t = v is a ut vertex, then by the indution hypothesis eah G∗

i has a good drawing in the
v-wedge1. After performing a suitable rotation for eah of these drawings, and identifying their verties1Of ourse the v-wedges for the di�erent omponents are di�erent.7



orresponding to v, the lemma follows beause the slopes of the segments inident to v form a ontiguousinterval in eah omponent.If t 6= v, then let Gj be the omponent ontaining t. Using the indution hypothesis, G∗
j has agood drawing. Also, eah G∗

i for i ≥ 2 has a good drawing in the v-wedge. As in the previous ase, thelemma follows by rotating and possibly saling down the omponents for i 6= j and again identifyingthe verties orresponding to v.In view of Lemma 7, in the sequel we onsider only bionneted graphs. We need the followingde�nition.De�nition 8. An ordering of the verties of a graph, v1, v2, . . . , vn, is said to be an st-ordering if
v1 = s, vn = t, and if for every 1 < i < n the vertex vi has at least one neighbor that preedes it and aneighbor that follows it.In [16℄, it was shown that any bionneted graph has an st-ordering, for any hoie of the verties
s and t. In [2℄, this result was slightly strengthened for planar graphs, as follows.Lemma 9. (Biedl-Kant) Let DG be a drawing of a bionneted planar graph, G, with verties s and ton the outer fae. Then G has an st-ordering for whih s = v1, t = vn and v2 is also a vertex of theouter fae and v1v2 is an edge of the outer fae.We de�ne Gi to be the subgraph of G indued by the verties v1, v2, . . . , vi. Note that Gi is on-neted. If i is �xed, we all the edges between V (Gi) and V (G)\V (Gi) the pending edges. For a drawingof G, DG, we denote by DGi

the drawing restrited to Gi and to an initial part of eah pending edgeonneted to Gi.Proposition 10. In the drawing DG guaranteed by Lemma 9, vi+1, . . . vn and the pending edges arein the outer fae of DGi
.Proof. Suppose for ontradition that for some i and j > i, vj is not in the outer fae of DGi

. Weknow that vn is in the outer fae of DGi
as it is on the outer fae of DG, thus vn and vj are in di�erentfaes of DGi

. On the other hand, by the de�nition of st-ordering, there is a path in G between vj and
vn using only verties from V (G) \ V (Gi). The drawing of this path in DG must lie ompletely in onefae of DGi

. Thus, vj and vn must also lie in the same fae, a ontradition. Sine the pending edgesonnet V (Gi) and V (G) \ V (Gi), they must also lie in the outer fae.By Lemma 9, the edge v1v2 lies on the boundary of the outer fae of DGi
, for any i ≥ 2. Thus,we an order the pending edges onneting V (Gi) and V (G) \ V (Gi) by walking in DG from v1 to v2around DGi

on the side that does not onsist of only the v1v2 edge, see Figure 4(a). We all this thepending-order of the pending edges between V (Gi) and V (G) \V (Gi) (this order may depend on DG).Proposition 10 impliesProposition 11. The edges onneting vi+1 to verties preeding it form an interval of onseutiveelements in the pending-order of the edges between V (Gi) and V (G) \ V (Gi).For an illustration see Figure 4(a).Two drawings of the same graph are said to be equivalent if the irular order of the edges inidentto eah vertex is the same in both drawings. Note that in this order we also inlude the pending edges(whih are di�erentiated with respet to their yet not drawn end).Now we are ready to �nish the proof of Theorem 3, as the following lemma is the only missing step.Lemma 12. For any bionneted planar graph G with maximum degree d ≥ 6 and for any vertex
t ∈ V (G) with degree stritly less then d, G admits a good drawing that is ontained in the t-wedge.8
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(b) The preeding neighbors of vi+1 areonseutive in the pending-orderFigure 4: Properties of the st-orderingProof. Take a planar drawing DG of G suh that t is on the outer fae and pik another vertex, s, fromthe outer fae. Apply Lemma 9 to obtain an st-ordering with v1 = s, v2, and vn = t on the outer faeof DG suh that v1v2 is an edge of the outer fae. We will build up a good drawing of G by startingwith v1 and then adding v2, v3, . . . , vn one by one to the outer fae of the urrent drawing. As soon aswe add a new vertex vi, we also draw the initial piees of the pending edges, and we make sure thatthe resulting drawing is equivalent to the drawing DGi
.Another property of the good drawing that we maintain is that every edge onsists of preiselythree piees. (Atually, an edge may onsist of fewer than 3 segments, beause two onseutive pieesare allowed to have the same slope and form a longer segment) The middle piee will always be vertial,exept for the middle piee of v1v2.Suppose without loss of generality that v1 follows diretly after v2 in the lokwise order of theverties around the outer fae of DG. Plae v1 and v2 arbitrarily in the plane so that the x�oordinateof v1 is smaller than the x�oordinate of v2. Connet v1 and v2 by an edge onsisting of three segments:the segments inident to v1 and v2 are vertial and lie below them, while the middle segment has anarbitrary non-vertial regular slope. Draw a horizontal auxiliary line l2 above v1 and v2. Next, draw theinitial piees of the other (pending) edges inident to v1 and v2, as follows. For i = 1, 2, draw a shortsegment from vi for eah of the edges inident to it (exept for the edge v1v2, whih has already beendrawn) so that the direted slopes of the edges (inluding v1v2) form a ontiguous interval and theirirular order is the same as in DG. Eah of these short segments will be followed by a vertial segmentthat reahes above l2. These vertial segments will belong to the middle piees of the orrespondingpending edges. Clearly, for a proper hoie of the lengths of the short segments, no rossings will bereated during this proedure. So far this drawing, inluding the partially drawn pending edges between

V (G2) and V (G) \ V (G2), will be equivalent to the drawing DG2
. As the algorithm progresses, thevertial segments will be further extended above l2, to form the middle segments of the orrespondingedges. For an illustration, see Figure 5(a).The remaining verties vi, i > 2, will be added to the drawing one by one, while maintaining theproperty that the drawing is equivalent to DGi

and that the pending-order of the atual pending edgesoinides with the order in whih their vertial piees reah the auxiliary line li. At the beginning ofstep i+ 1, these onditions are obviously satis�ed. Now we show how to plae vi+1.Consider the set X of intersetion points of the vertial (middle) piees of all pending edges be-tween V (Gi) and V (G) \ V (Gi) with the auxiliary line li. By Proposition 11, the intersetion points9
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(b) Adding vi; partial edges added in thisstep are drawn with dashed linesFigure 5: Drawing with at most two bendsorresponding to the pending edges inident to vi+1 must be onseutive elements of X. Let m be(one of) the median element(s) of X. Plae vi+1 at a point above m, so that the x-oordinates of
vi+1 and m oinide, and onnet it to m. (In this way, the orresponding edge has only one bend,beause its seond and third piee are both vertial.) We also onnet vi+1 to the upper endpoints ofthe appropriately extended vertial segments passing through the remaining elements of X, so thatthe direted slopes of the segments leaving vi+1 form a ontiguous interval of regular slopes. For anillustration see Figure 5(b). Observe that this step an always be performed, beause, by the de�nitionof st-orderings, the number of edges leaving vi+1 is stritly smaller than d. This is not neessarily truein the last step, but then we have vn = t, and we assumed that the degree of t was smaller than d. Toomplete this step, draw a horizontal auxiliary line li+1 above vi+1 and extend the vertial portionsof those pending edges between V (Gi) and V (G) \ V (Gi) that were not inident to vi+1 until theyhit the line li+1. (These edges remain pending in the next step.) Finally, in a small viinity of vi+1,draw as many short segments from vi+1 using the remaining direted slopes as many pending edgesonnet vi+1 to V (G) \ V (Gi+1). Make sure that the direted slopes used at vi+1 form a ontiguousinterval and the irular order is the same as in DG. Continue eah of these short segments by addinga vertial piee that hits the line li+1. The resulting drawing, inluding the partially drawn pendingedges, is equivalent to DGi+1

.In the �nal step, if we plae the auxiliary line ln−1 high enough, then the whole drawing will beontained in the vn-wedge and we obtain a drawing that meets the requirements.5 Lower BoundsIn this setion, we onstrut a sequene of planar graphs, providing a nontrivial lower bound forthe planar slope number of bounded degree planar graphs. They also require more than the trivialnumber (⌈d/2⌉) slopes, even if we allow one bend per edge. Remember that if we allow two bends peredge, then, by Theorem 3, for all graphs with maximum degree d ≥ 3, exept for the otahedral graph,
⌈d/2⌉ slopes are su�ient, whih bound is optimal.10



Theorem 13. For any d ≥ 3, there exists a planar graph Gd with maximum degree d, whose planarslope number is at least 3d− 6. In addition, any drawing of Gd with at most one bend per edge requiresat least 3

4
(d− 1) slopes.

a

b c

a
′

b
′ c

′(a) A straight line drawing of G6

b

a

c(b) At most four segments startingfrom a, b, c an use the same slope ina drawing of Gd with one bend peredgeFigure 6: Lower boundsProof. The onstrution of the graph Gd is as follows. Start with a graph of 6 verties, onsisting oftwo triangles, abc and a′b′c′, onneted by the edges aa′, bb′, and cc′ (see Figure 6(a)). Add to thisgraph a yle C of length 3(d− 3), and onnet d− 3 onseutive verties of C to a, the next d− 3 ofthem to b, and the remaining d− 3 to c. Analogously, add a yle C ′ of length 3(d − 3), and onnetone third of its verties to a′, one third to b′, one third to c′. In the resulting graph, Gd, the maximumdegree of the verties is d.In any rossing-free drawing of Gd, either C lies inside the triangle abc or C ′ lies inside the triangle
a′b′c′. Assume by symmetry that C lies inside abc, as in Figure 6(a).If the edges are represented by straight-line segments, the slopes of the edges inident to a, b, and
c are all di�erent, exept that aa′, bb′, and cc′ may have the same slope as some other edge. Thus, thenumber of di�erent slopes used by any straight-line drawing of Gd is at least 3d− 6.Suppose now that the edges of Gd are represented by polygonal paths with at most one bendper edge. Assume, for simpliity, that every edge of the triangle abc is represented by a path withexatly one bend (otherwise, an analogous argument gives an even better result). Consider the 3(d−3)polygonal paths onneting a, b, and c to the verties of the yle C. Eah of these paths has a segmentinident to a, b, or c. Let S denote the set of these segments, together with the 6 segments of the pathsrepresenting the edges of the triangle abc.Claim 14. The number of segments in S with any given slope is at most 4.Proof. The sum of the degrees of any polygon on k verties is (k − 2)π. Every diretion is overed byexatly k − 2 angles of a k-gon (ounting eah side 1/2 times at its endpoints). Thus, if we take everyother angle of a hexagon, then, even inluding its sides, every diretion is overed at most 4 times. (SeeFigure 6(b).)The laim now implies that for any drawing of G with at most one bend per edge, we need at least
(3(d − 3) + 6)/4 = 3

4
(d− 1) di�erent slopes. 11
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