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1. Introduction

Search problems when some of the answers may be lies have been studied
by various researchers (for a list of references see the surveys by Deppe [2]
and Pelc [3]). Three models have attracted the most attention. In the �rst
model a �xed number k of the answers may be false, in the second model a
�xed proportion p of the answers may be erroneous, while in the third model
every answer turns out to be a lie with probability p independently from all
other answers.

The problem of �nding the maximum or the minimum element of a totally
ordered set is solved in [5]. Aigner in [1] considered the problem of �nding
both the maximum and minimum elements (which we will later also refer to
as the extremal elements). He obtained asymptotically tight results for the
second model, but only upper and lower bounds for the �rst model. In this
paper we address the problem of �nding the extremal elements of a totally
ordered set of size n using pairwise comparisons in the �rst model. That is,
we are given distinct numbers x1, x2, ..., xn along with a positive integer k and
at each step of our algorithm, we can ask whether xi < xj or xi > xj holds
for any i 6= j, and during the process at most k answers might turn out to
be false. Note that the queries made during the process might depend on the
answers to the previously asked comparisons, i.e. we consider the so-called
adaptive problem.

If all answers have to be correct then the minimum number of comparisons
needed is d3n

2
e − 2 (see [4]). One could think that if k erroneous answers are

allowed, then all one has to do is to modify the well-known argument of
the no lie case. Unfortunately the if-and-only-if-type statement of the case
where only correct answers allowed, does not hold now, and therefore the
proofs of the upper and lower bound are absolutely di�erent. Before going
into the details of the proofs let us introduce some notations and the �soccer
terminology�.

The element xi will be called the ith team, a comparison will be called a
match which is a win for the team of the larger element and a loss for the team
of the smaller element. We will also say that xi beats xj if the match between
xi and xj ended with a win for xi. For a team x, let w(x) denote the number of
wins of x, and let l(x) be the number of losses of x. In the case of k erroneous
answers, we put wlk(x) = (max{k + 1− w(x), 0},max{k + 1− l(x), 0}), the
number of wins and losses that are still needed in order to prove that x
is neither the maximal nor the minimal element. We also use the notation
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a+ = max{a, 0}, so for example we can write wlk(x) = ((k+1−w(x))+, (k+
1− l(x))+).

Let us de�ne the championship graph G as follows: the vertex set of this
directed multigraph is the set of teams, and for each match a directed edge
is given to the graph oriented from the loser toward the winner.

If the championship graph contains a directed cycle, then we know that
for one of the matches corresponding to the edges of the cycle we were given
an erroneous result. Therefore if we forget about the results corresponding
to the edges of the cycle, we know that among the other results (including
the forthcoming ones) there can be at most k−1 lies. This is the reason why
the above-mentioned if-and-only-if-type statement is not true in this case.
However, the obvious direction still holds as stated in the following claim.

Claim 1.1. If at most k erroneous answers are allowed, then a team x with
wlk(x) = (0, 0) cannot be the maximum or the minimum element.

Corollary 1.2. Suppose that at most k erroneous answers are allowed and
we have exactly two elements x with wlk(x) 6= (0, 0). If for both of these
elements either the number of losses or the number of wins is k, then they
are the extremal elements.

Corollary 1.2 will serve to prove upper bounds on the number of compar-
isons needed to �nd the extremal elements in di�erent models. To provide
lower bounds we will use the notion of an Adversary. A strategy of an Adver-
sary is a function that tells us what the Adversary answers for a query in the
view of previous queries and answers. To obtain lower bounds we will have
to prove that there exists an Adversary's strategy that answers any sequence
of queries in such a way that until at least D comparisons asked, no strategy
of queries determines both the maximum and the minimum elements. How
can one guarantee that a sequence of queries and answers does not determine
the extremal elements? Observe that a championship graph may consist of
true answers if and only if it is acyclic. Furthermore, it is obvious that if in a
directed acyclic graph G one changes the orientation of all incoming (outgo-
ing) edges that are adjacent to a �xed vertex v, then the resulting graph G′

is also acyclic. These two easy observations give us the following Corollary.

Corollary 1.3. If at most k erroneous answers are allowed, and if there
exists a strategy of an Adversary that can assure that after D queries the
championship graph is acyclic and there exists at least two vertices either both
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with in-degree at most k or both with out-degree at most k, then the number
of comparisons needed to �nd the maximum and the minimum elements is at
least D + 1.

The rest of the paper is organized as follows: in Section 2 we present a
simple (and not optimal) algorithm and bound the number of comparisons
it uses for arbitrary k. This algorithm was already described by Aigner [1],
however his proof for the number of comparisons used in the algorithm is
somewhat di�erent from ours and the method of our proof is used later to
give an almost matching lower bound in the case k = 1. In Section 3, we
address the original problem with at most one lie allowed and prove the
following main result of the present paper.

Theorem 1.4. For the minimum number M(n) of comparisons needed to
�nd the extremal elements among n elements if there might be one erroneous
answer, we have

d87n

32
e − 3 ≤M(n) ≤ d87n

32
e+ 12.

Aigner [1] stated the upper bound and conjectured it to be optimal, thus
Theorem 1.4 veri�es his conjecture. In Section 4 we gather some open prob-
lems and concluding remarks.

2. Algorithm for arbitrary k

In this section we give an algorithm that does not use the possible addi-
tional information that might be gained from the existence of directed cycles
in the championship graph. First let us introduce a slightly di�erent version
of the problem, when the algorithm �cannot use� this additional information.

We are given n teams x1, ..., xn and every team xi possesses an ordered
pair wlk(xi) = (ai, bi). At the beginning of the procedure ai = bi = k+1 for all
1 ≤ i ≤ n. A query in this version is a pair of teams {xi, xj} and there are two
possible "answers": either wlk(xi) = ((ai − 1)+, bi), wlk(xj) = (aj, (bj − 1)+)
or wlk(xi) = (ai, (bi − 1)+), wlk(xj) = ((aj − 1)+, bj) but there must always
be a team with a positive ai and another one with a positive bi. The process
ends when all but two (ai, bi) pairs are (0, 0) and from the remaining two, at
least one has a zero ai or bi. Denote the minimum number of queries needed
to obtain this situation by N(k, n). In the remainder of this section we prove
the following theorem.
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Theorem 2.1.

N(k, n) = (k+1)(1+

(
2(k + 1)

k + 1

)
2−2(k+1))n+Θk(1) = (k+Θ(

√
k))n+Θk(1).

It is clear that any upper bound on N(k, n) is also an upper bound for the
number of comparisons needed in the original problem, since every algorithm
that solves this problem, also solves the original one because of Corollary 1.2.

Proof : We de�ne a symmetric potential function p : N×N→ N. Let p(a, 0) =
p(0, a) = a for any a ∈ N and let us de�ne the other values recursively by
the equation

2p(a, b) = p(a− 1, b) + p(a, b− 1) + 1. (1)

Now we determine the value p(k, k). Putting g(a, b) = 2a+bp(a, b)− (a +
b)2a+b−1, equation (1) transforms to

g(a, b) = g(a− 1, b) + g(a, b− 1) (2)

with g(a, 0) = a2a−1. Here we see the same recursion as for the binomial
coe�cients, but unfortunately the initial values di�er. For a, b > 0 we have

g(a, b) =
a∑

i=1

g(i, 0)

(
a− i+ b− 1

b− 1

)
+

b∑
j=1

g(0, j)

(
a− 1 + b− j

a− 1

)
.

From this we can determine the value of g(k, k).

g(k, k) = 2
k∑

i=1

g(i, 0)

(
2k − 1− i
k − 1

)
=

k∑
i=1

i2i

(
2k − 1− i
k − 1

)
.

This can be transformed into a nice, explicit form using properties of
binomial coe�cients.

Lemma 2.2.
∑k

i=1 i2
i
(
2k−1−i

k−1

)
=
(
2k
k

)
k.

Proof.

2
k∑

i=1

i2i−1

(
2k − 1− i
k − 1

)
= 2

k∑
i=1

(
2k − 1− i
k − 1

)
·

i∑
j=0

i

(
i− 1

j

)
=
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2
k∑

i=1

(
2k − 1− i
k − 1

)
·

i∑
j=0

j

(
i

j

)
= 2

k∑
j=1

j

k∑
i=j

(
i

j

)(
2k − 1− i
k − 1

)
.

For the inner part we have

k∑
i=j

(
i

j

)(
2k − 1− i
k − 1

)
=

(
2k

k + j

)
,

because both sides count the number of 0�1 sequences of length 2k with
k + j 1-coordinates. (Each part of the sum on the left hand side counts the
sequences in which the (j + 1)st 1 is in the (i+ 1)st position.) Using this we
obtain

2
k∑

j=1

j
k∑

i=j

(
i

j

)(
2k − 1− i
k − 1

)
= 2

k∑
j=1

j

(
2k

k + j

)
=

2

(
k∑

j=1

(k + j)

(
2k

k + j

)
−

k∑
j=1

k

(
2k

k + j

))
=

2

(
2k

k∑
j=1

(
2k − 1

k + j − 1

)
− k

k∑
j=1

(
2k

k + j

))
=

2

(
k22k−1 − (k22k−1 − 1

2
k

(
2k

k

)
)

)
= k

(
2k

k

)
.

This implies p(k, k) = k + g(k, k)/22k = k(1 +
(
2k
k

)
/22k).

Put p(x) = p(wlk(x)) and observe the following:
1. If a query involves x and y with wlk(x) = wlk(y) 6= (0, 0), then because

of (1) the sum
∑n

i=1 p(xi) decreases by exactly 1. Until at most (k + 1)2

teams remain with wlk(x) 6= (0, 0), we can always �nd such a query by the
pigeonhole principle, therefore we obtain our desired situation using at most
p(k + 1, k + 1)n+ ck queries, which gives the upper bound of the theorem.

2. If a query involves teams x and y with wlk(x) = (a, b), wlk(y) = (c, d),
then the possible "outcomes" are wlk(x) = ((a−1)+, b), wlk(y) = (c, (d−1)+)
and wlk(x) = (a, (b − 1)+), wlk(y) = ((c − 1)+, d). Again by (1), it is clear
that the decrease of

∑n
i=1 p(xi) is 2 if we add up the decrease of both possible
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cases, so with one of the possible outcomes this sum will decrease by at most
1. If the Adversary's strategy is to answer all queries in such a way that
the sum decreases by at most 1, then it is obvious that one needs at least
p(k + 1, k + 1)n − p(k + 1, 0) − p(k + 1, k + 1) ≥ p(k + 1, k + 1)n − 3k − 3
queries, which gives the lower bound of the theorem.

3. Selection with one lie

In this section we prove Theorem 1.4. In the �rst subsection we describe
an algorithm with at most d(11/4 − 1/32)ne + 12 comparisons to �nd the
maximum and minimum elements despite at most one erroneous answer
which is best possible if we disregard the additive constant term. In the
second subsection we modify the potential function used in the proof of The-
orem 2.1 to prove the lower bound in Theorem 1.4. We use the notation
wl(x) = wl1(x) = ((2− w(x))+, (2− l(x))+).

3.1. Upper bound

In this subsection we describe an algorithm that �nds the smallest and the
largest elements of a set of size n using not more than d(11/4− 1/32)ne+ 12
comparisons if at most one of the comparisons may turn out to be erroneous.
Note that the algorithm of the previous section only gives an algorithm that
uses 2.75n+O(1) questions. For the sake of simplicity we will omit all ceiling
signs.

We describe our algorithm in rounds. A round is a set of matches that
can be played at the same time. In the �rst round we consider an arbitrary
maximum matching of the teams, therefore with n/2 matches played we will
have a set X of n/2 teams with wl(x) = (1, 2) for all x ∈ X and a set Y
of n/2 teams with wl(y) = (2, 1) for all y ∈ Y . In the second round we
consider a maximum matching of the teams of X. With this additional n/4
matches X will be divided into X1 and X2 such that |X1|, |X2| = n/4 and
wl(x1) = (0, 2) for all x1 ∈ X1 and wl(x2) = (1, 1) for all x2 ∈ X2.

In the third round of our algorithm we divideX2 into two using a matching
of n/8 additional matches. We obtainX = X1∪X1

2∪X2
2 with |X1

2 |, |X2
2 | = n/8

and wl(x) = (0, 1) for all x ∈ X1
2 and wl(x) = (1, 0) for all x ∈ X2

2 .
Let Y ′ be the set of teams in Y that were matched in the �rst round with

teams in X2
2 . The fourth round of our algorithm consists of a matching of Y

such that any team of Y ′ plays another team from Y ′ (i.e. we use a matching
of Y that is an expansion of a matching of Y ′). After the n/4 matches of the
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fourth round we will have Y = Y1∪Y2 with |Y1|, |Y2| = n/4, |Y2∩Y ′| = n/16
and wl(y) = (2, 0) for all y ∈ Y1 and wl(y) = (1, 1) for all y ∈ Y2.

In the �fth round of our algorithm we use a matching of Y2 that is an
extension of a matching of Y2 ∩ Y ′. After these n/8 matches we will have
Y = Y1∪Y 1

2 ∪Y 2
2 with |Y 1

2 | = |Y 2
2 | = n/8, |Y 2

2 ∩Y ′| = n/32 and wl(y) = (1, 2)
for all y ∈ Y 1

2 and wl(y) = (2, 1) for all y ∈ Y 2
2 .

The sixth round is where our algorithm gains the extra n/32 matches. In
this round the matches that were played in the �rst round between teams of
Y 2

2 ∩Y ′ and their opponents are replayed. Recall that those matches were won
by the teams in X2

2 . If for all matches the same results are obtained as in the
�rst round, then for any team x involved in this round we have wl(x) = (0, 0).
In this case after the n/2+n/4+n/8+n/4+n/8+n/32 = 41n/32 matches of
the �rst six rounds we will have n/16 teams with wl(x) = (0, 0), the number
of teams with wl(x) = (0, 2) or (2, 0) is n/4 each, while the number of teams
with wl(x) = (0, 1) or (1, 0) is 7n/32 each. If n is not a power of 2, then at the
matching of each round there could have been an unmatched team, so there
can be an additional team for all possible values of wl(x). The total number of
"missing" wins and losses to reach the situation of Corollary 1.2 is (at most)
2·(n/4+n/4)+1·(7n/32+7n/32)+14 = 46n/32+14. Now with every further
match we can decrease this number by one, provided all matches are played
by two teams either both having two wins or both having two losses and no
team x with wl(x) = (0, 0) is playing. Thus the total number of matches
played during our algorithm is at most 41n/32 + 46n/32 + 12 = 87n/32 + 12.

All that remains is to consider what happens if any match in round six
ends with a di�erent result than it ended in round one (since only one lie is
allowed, there can be at most one such match). In this case we do not know
the "real result" of this match, but we know that the results of all the other
matches (including the forthcoming ones) are correct, so deleting the two
contradicting scores leaves us in a position, where we should �nd the smallest
and the largest element without lies. Therefore for every team x, we can
replace wl(x) = (a, b) by wl0(x) = ((a− 1)+, (b− 1)+). In this way, after the
41n/32 matches of the �rst six round, all teams x have wl0(x) = (1, 0), (0, 1)
or (0, 0) (if n is odd, then there is an additional team y that misses all rounds
and thus have wl0(y) = (1, 1)), therefore we can �nish our algorithm with at
most n queries that gives a total of 73n/32 queries.

Remark. One can improve on the constant 12 by a case-by-case analysis
according to the residue class of n modulo 32, however the lower bound of
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Theorem 1.4 still cannot be matched in all cases.

3.2. Lower bound

In this subsection we describe a strategy for the Adversary showing that
at least 87n/32− 3 queries are necessary to �nd both the maximum and the
minimum elements. Because of the observation made in the introduction,
this strategy should avoid making directed cycles in the championship graph
until the very end of the algorithm. We will use a potential function p just
as in Section 2, but as the answer for this problem is di�erent from that
of the problem in Section 2 we have to modify this function a bit using a
"correction function" c. For convenience's sake we �rst enumerate the values
of p(x) = p(wl(x)) that we need: p(0, 0) = 0, p(1, 0) = p(0, 1) = 1, p(2, 0) =
p(0, 2) = 2, p(1, 1) = 1.5, p(2, 1) = p(1, 2) = 2.25, p(2, 2) = 2.75. Note that
if any x and y play each other, then there is a possible outcome, such that
p(x) + p(y) decreases by at most one.

The function c is de�ned for each ordered pair of teams, including the
case when the two teams are the same.

Let us de�ne c(x, x) = 1/32 if wl(x) = (2, 2), i.e. if the team x has not
played any matches yet, and c(x, x) = 0 if wl(x) 6= (2, 2).

Let x and y be two distinct teams. If x and y has played their very �rst
game against each other, x has beaten y, and since then x has not won and
y has not lost any matches, then x and y are said to be pairs of each other.
If this is the case, then let c(x, y) = (1/2)(2−l(x))++(2−w(y))+ , otherwise let
c(x, y) = 0.

With this modi�cation the Adversary will have a strategy avoiding di-
rected cycles such that

∑
p(x) −

∑
c(x, y) decreases by at most 1 after

each comparison. At the beginning of the algorithm
∑
p(x) −

∑
c(x, y) =

n(p(2, 2) − 1/32) = 87n/32 and at the end of the algorithm this sum is at
most p(2, 0) + p(0, 2) = 4, thus Corollary 1.3 gives 87n/32 − 4 as a lower
bound (at the end of the subsection we strengthen this bound by 1 to obtain
the statement of the theorem).

Now we de�ne some special subsets of teams that will change during the
game. The Champions' League and the Second Division are both empty at
the beginning and if a team becomes an element of one of them, it stays there
forever. After each comparison, a team becomes an element of the Champi-
ons' League if it is not yet in the Second Division, it was only beaten by
teams who are now in the Champions' League and it has two wins. Similarly,
after each comparison, a team becomes an element of the Second Division if
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it is not yet in the Champions' League, it only won against teams who are
now in the Second Division and it has two losses. Note that not only the win-
ner (loser) of a comparison may move into the Champions' League (Second
Division), e.g. if wl(x) = (1, 0) and the only team beaten by x moves into
the Second Division, then x moves there as well. If a team is not an element
of the Champions' League or the Second Division, we say that it is active.
We say that an active team is in reach of the Champions' League (or of the
Second Division) if it only needs one more win (loss) to become a member.
We would like to �nd an Adversary's strategy such that during the whole
process every team that has already played a game, is either a member of
the Champions' League or of the Second Division or is in reach of (at least)
one of them (condition 1). Furthermore, every previous opponent of each ac-
tive team will be inactive except maybe its pair (if it has any) (condition 2).

Now we describe the strategy of the Adversary, that is, we exhibit a func-
tion that determines who is winning which game such that S =

∑
p(x) −∑

c(x, y) decreases by at most 1 after each comparison and the abovemen-
tioned conditions hold.

If a team gets into the Champions' League, then from that on it wins every
match against teams that were not in the Champions' League at the moment
of its quali�cation (the moment when it became a member of the Champions'
League). Similarly, if a team gets into the Second Division, then it loses
every further match against teams that were not in the Second Division at
the moment when it got there. Obviously, this kind of matches cannot give
directed cycles.

If two active, pairless teams play, then there always exists an answer that
decreases S by at most 1. This answer cannot give a directed cycle since all
their previous opponents were already inactive. Also note that, unless this
was the �rst game for both teams, one of the teams becomes inactive.

The only case that remains is when an active team x who has an active
pair y is playing another active team z. Without loss of generality, suppose
that x has beaten y in their �rst game. By condition 1, this implies that x is
in reach of the Champions' League and y is in reach of the Second Division.
The possible values of wl(x) are (1, 2), (1, 1) and (1, 0), while the possible
values of wl(z) are (2, 1), (1, 1) and (0, 1).

Case 0: z = y. To avoid a cycle of length two, x has to win the game. S

10



decreases by p(x) + p(y)− c(x, y) (since c(x, y) vanishes after the game) and
it is easy to check that this is at most 1.

Case 1: z has no pair. This means that z cannot have two wins or losses
(otherwise it would not be active).

Case 1.1: l(z) ≥ w(z).

Case 1.1.1: wl(x) 6= (1, 0). If x wins, then p(z) decreases by at most 0.5,
p(x) also decreases by at most 0.5, c(x, y) vanishes.

Case 1.1.2: wl(x) = (1, 0).
Case 1.1.2.1: wl(z) = (1, 1). If z wins, it moves into the Champions'

League, x and y remain una�ected.
Case 1.1.2.2: wl(z) = (2, 1). If x wins, p(z) decreases by 0.25, p(x)

decreases by 1, but c(x, y) ≥ 1/4 vanishes, since x moves into the Champions'
League.

Case 1.1.2.3: wl(z) = (2, 2). Now we need z to win but this would not
make it move into the Champions' League ruining condition 2. We solve
this problem by giving some more information: we answer the same question
again without being asked, this way wl(z) becomes (0, 2) and z moves into
the Champions' League. Of course we are not allowed to count the question
twice, but we do not need to if we can show that S decreases by at most 1
after the two answers. Indeed, p(z) only decreases by 0.75, while x and y are
una�ected.

Case 1.2: l(z) < w(z). This means that wl(z) = (1, 2).

Case 1.2.1: wl(x) = (1, 0). If z wins, it moves into the Champions'
League, x and y remain una�ected.

Case 1.2.2: wl(x) = (1, 2). If x wins, it moves into the Champions'
League, p(z) decreases by 0.75, p(x) decreases by 0.25, c(x, y) vanishes.

Case 1.2.3: wl(x) = (1, 1).
Case 1.2.3.1: c(x, y) ≥ 1/4. If x wins, it moves into the Champions'

League, p(z) decreases by 0.75, p(x) decreases by 0.5, c(x, y) vanishes.
Case 1.2.3.2: c(x, y) = 1/8. If z wins, it moves into the Champions'

League, p(z) decreases by 0.25, p(x) decreases by 0.5, c(x, y) increases by
1/8.
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Case 2: z has a pair q who was beaten by z. Now either x or z moves
into the Champions' League and either c(x, y) or c(z, q) vanishes. Note that
in this case the roles of x and z are symmetric, this eliminates some cases.

Case 2.1: wl(x) = wl(z). If c(x, y) ≤ c(z, q), then z wins, otherwise x
wins, so p(x) + p(z) decreases by 1, c(x, y) + c(z, q) does not increase.

Case 2.2: wl(x) = (1, 0). If z wins, p(z)− c(z, q) decreases by at most 1,
x and y are una�ected.

Case 2.2': wl(z) = (1, 0) is analogous to 2.2.

Case 2.3: wl(x) = (1, 1), wl(z) = (1, 2).

Case 2.3.1: c(x, y) ≤ c(z, q) + 1/4. If z wins, p(x) + p(z) decreases by
0.75, c(x, y) increases by at most c(z, q) + 1/4, while c(z, q) vanishes.

Case 2.3.2: c(x, y) = 1/2, c(z, q) < 1/4. If x wins, p(x) + p(z) decreases
by 1.25, c(z, q) increases by less than 1/4, while c(z, q) vanishes.

Case 2.3': wl(x) = (1, 2), wl(z) = (1, 1) is analogous to 2.3.

Case 3: z has a pair q who has beaten z.

Case 3.1: wl(z) = (2, 1). If x wins, p(z) decreases by 0.25 and p(x) −
c(x, y) decreases by at most 0.75.

Case 3.2: wl(z) = (1, 1).

Case 3.2.1: wl(x) 6= (1, 0). If x wins, p(z) decreases by 0.5, p(x) also
decreases by at most 0.5, c(x, y) and c(q, z) vanish.

Case 3.2.2: wl(x) = (1, 0).
Case 3.2.2.1: If c(x, y) + c(q, z) ≥ 1/2, then let x win, so p(z) decreases

by 0.5, p(x) decreases by 1, but c(x, y) and c(q, z) vanish.
Case 3.2.2.2: If c(x, y) + c(q, z) < 1/2, then c(x, y) = 1/4 and c(q, z) =

1/8, thus we have wl(q) = (1, 2) and wl(y) = (2, 1). If z wins, then p(z)
decreases by 0.5 and c(q, z) increases by 1/8. Condition 2 is ruined, so we
give some more information just like in case 1.1.2.3. We give the additional
information that q has beaten y, making all the involved teams inactive. Now
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p(q) and p(y) decrease by 0.25 each, while c(x, y) and c(q, z) vanish.

Case 3.3: wl(z) = (0, 1).

Case 3.3.1: If wl(x) 6= (1, 0), then this is the same situation as 3.1 or
3.2.2, just swap the roles of x and z and the wins and losses.

Case 3.3.2: wl(x) = (1, 0). If z wins, then S remains unchanged, but
condition 2 is ruined. We again use the trick of giving unwanted information,
we say that q has beaten z (for a second time). This way they both go into
the Champions' League and S decreases by at most 1.

We checked all the cases, which proves the bound M(n) ≥ 87n/32− 4.
Now we show how to strengthen this bound by 1 to match the lower

bound of Theorem 1.4.
According to the Adversary's strategy we have described, in the very last

match either a team with only one win wins (so it cannot be the minimum)
or a team with only one loss loses (so it cannot be the maximum). Now we
change the answer of the Adversary to this last question. We claim that in
this way either the minimum or the maximum element remains unknown,
hence another question is needed, which proves the lower bound of Theorem
1.4. We may suppose that a team x with only one win is beaten by a team
y. Now we have two di�erent possibilities to make the championship graph
acyclic by changing the orientation of at most one edge: either we change the
edge corresponding to this last match or we change the edge corresponding
to the match won by x earlier. It is easy to see that the minimum elements
are di�erent for the two cases, thus we need (at least) one more question to
�nd the minimum element.

4. Further results and remarks

In this �nal section we gather further results and open problems related to
Theorem 1.4. The most important unsolved question is of course to �nd the
minimum number of comparisons needed in the cases k > 1. How much better
can one do than the simple upper bound of Theorem 2.1? We conjecture that
for any ε > 0 there exists an integer K such that for every k > K the number
of comparisons needed is at most (k + 1 + ε)n.
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In what follows we enumerate some models where either restrictions are
posed for the possible comparisons or for the relation of the possible erro-
neous answers. One way that a restriction can be posed is if one can ask
a pair {xi, xj} to be compared at most once. We call this restricted model
the Gentlemen's model (because gentlemen do not question each other's an-
swers...). With this restriction one cannot �nd the maximum provided one
lie is allowed even if every possible pair is compared. To see this, just observe
that if the one and only erroneous answer is when the maximum is com-
pared to the third largest element, then clearly one cannot tell the di�erence
between the three largest elements.

However, one can �nd algorithms that provide solutions for the following
problems:

(i) Find 3 elements such that one of them is the largest.
(ii) Find an element which is one of the three largest.

It is not too di�cult to �nd the exact solution for the �rst problem: 2n−5
comparisons are needed for n > 3. Finding an algorithm that needs at most
2n− 5 queries is easy and is left to the Reader. For the lower bound an Ad-
versary's strategy can be given: the order of the elements will be determined
after the �rst question and the Adversary will never lie. The winner of the
�rst match will be the largest element, the loser the second largest and �x
an arbitrary order for the rest.

Clearly there will be no directed cycles in the championship graph. Hence
an element x can be the largest one if and only if it has lost at most one
match. When someone names three elements such that the largest element is
among them, all the other n−3 elements must have lost at least two matches.
We also know that the second largest lost exactly one match, so there have
been at least 2n− 5 matches. This �nishes the proof of the lower bound.

We mention an upper bound for the second problem without proof: in
the Gentlemen's model the minimum number of comparisons needed to �nd
an element which is one of the three largest is at most 2n− log n+O(1).

Problems that we dealt with in Section 2 and 3 were about to �nd the
maximum and the minimum element. In the Gentlemen's model, we cannot
ask for an algorithm that would provide us these elements, but we could
ask for an algorithm that gives 6 elements that contain the maximum and
the minimum (in fact, 4 elements would su�ce). Note that the algorithm
presented in Theorem 2.1 can be arranged in such a way that no comparisons
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are asked twice, therefore 11/4n is a trivial upper bound and the lower bound
(11/4−1/32)n of Theorem 1.3 obviously remains valid in the more restrictive
Gentlemen's model. Again we state a better upper bound without proof that
we conjecture to be (asymptotically) optimal: in the Gentlemen's model the
minimum number of comparisons needed to �nd six elements which contains
the maximum and the minimum is at most (11/4− 1/96)n+O(1).

In our last model an unlimited number of erroneous answers may occur,
but every element may be involved in at most one erroneous comparison. We
call this model the 1-factor model (as the edges in the championship graph
corresponding to the lies form a (partial) matching). As Claim 1.1 remains
valid in this model, the trivial upper bound 11/4n of Theorem 2.1 holds and
the lower bound 87n/32 of Theorem 1.4 is also true. For the �rst thought,
one might conjecture that in this model the trivial upper bound could be
closer to the truth as there can be much more erroneous answers. Contrary
to this, the following holds.

Proposition 4.1. In the 1-factor model the minimum number of compar-
isons needed to �nd the maximum and the minimum is 87n/32 + Θ(1).

Proof. The lower bound follows from Theorem 1.4., for the upper bound
we have to describe an algorithm. We use again the potential function p
introduced in Section 2. We will say that at a match we gain c (or lose c)
if the sum

∑
p(x) decreases by 1 + c (or 1 − c) at that match. Note that

if teams x and y play such that wl(x) = wl(y) then we do not lose or gain
anything.

At the beginning of our algorithm, we pick 8 teams x1, x2, x3, x4, y1, y2, y3,
y4 and xi plays yi for all 1 ≤ i ≤ 4. We may suppose that the xi's win and
now x1 plays x2 and x3 plays x4. Finally the losers of these two matches play.
We may assume that x1 is the team that won its �rst match and lost the
other two. Note that until now we did not lose or gain anything as at every
match the wl-value of the playing teams were the same.

Now wl(x1) = (1, 0) and wl(y1) = (2, 1) and we replay their match. If
x1 wins again, then we gain 1/4 and repeat this procedure with the next 8
teams. If this time y1 beats x1, then wl(x1) stays (1, 0), while wl(y1) becomes
(1, 1), thus we lose 1/4, but we know that any further match involving x1

or y1 will give the true result. To exploit this fact we pick 5 more teams
u, v1, v2, w1, w2 with wl-value (2, 2). Let y1 play with u and vi play with wi

for i = 1, 2. At the match between y1 and u we gain 1/4 as wl(u) will be
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(0, 2) or (2, 0), since the result of this match cannot be a lie. At the matches
between the vi's and the wi's we do not gain or lose anything, but then x1

should play one of the losers (the team with wl-value (2, 1)) and y1 should
play the other loser if y1 lost to u (i.e. wl(y1) = (1, 0)) and with a winner
if y1 beats u. It is easy to verify that because these matches cannot have
erroneous results, we will gain 1/4 at each of these matches, thus in total we
gain 3 · 1/4− 1/4 = 1/2 at matches involving these 13 teams.

So we obtained that depending on the answer we got for the replay be-
tween x1 and y1, we can gain 1/4 at matches involving 8 teams or 1/2 at
matches involving 13 teams. Therefore we can gain at least n/8 · 1/4 = n/32
which gives the upper bound of the theorem, since we can �nish the algo-
rithm in such a way that until the last few matches every match is played
between teams with the same wl-value.

Finally, let us remark that throughout the paper we considered problems
in totally ordered sets. Finding analogous results for partially ordered sets
can be subject of future research.
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