Convex polygons are cover-decomposable

Domotor Palvolgyi* Géza Toth'

Abstract

We show that for any open convex polygon P there is a constant k(P) such that any k(P)-fold
covering of the plane with translates of P can be decomposed into two coverings.

1 Introduction

Let P={ P, | i € I } be a collection of planar sets. It is a k-fold covering if every point in the plane
is contained in at least k£ members of P. A 1-fold covering is simply called a covering.

Definition. A planar set P is said to be cover-decomposable if the following holds. There exists a
constant k = k(P) such that every k-fold covering of the plane with translates of P can be decomposed
into two coverings. J. Pach proposed the problem of determining all cover-decomposable sets in 1980.
For related problems, conjectures, see [BMPO05]|, Chapter 2.1.

Conjecture. (J. Pach) All planar convex sets are cover-decomposable.
This conjecture has been verified in three special cases.

Theorem A. (i) [P86] Every centrally symmetric open convez polygon is cover-decomposable.
(ii) [MP86| The open unit disc is cover-decomposable.
(iii) [TTO7| Every open triangle is cover-decomposable.

In this note we verify the conjecture for open convex polygons.
Theorem 1. Every open convex polygon is cover-decomposable.

Just like in [P86] and in [TTO07|, we formulate and solve the problem in its dual form. That is,
suppose P is a polygon of n vertices and we have a collection P = { P, | i € I } of translates of P.
Let O; be the center of gravity of P;. The collection P is a k-fold covering of the plane if and only if

every translate of P, the reflection of P through the origin, contains at least & points of the collection
0= { O; | 1el }
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The collection P = { P; | i € I } can be decomposed into two coverings if and only if the set
O =1{0;|i€l} can be colored with two colors, such that every translate of P contains a point of
both colors.

Divide the plane into small regions, say, squares, such that each square contains at most one vertex
of any translate of P. If a translate of P contains sufficiently many points of @, then it contains many
points of O in one of the little squares. We color the points of O separately in each of the squares.
If we concentrate on points in just one of the little squares, then instead of translates of P we can
consider translates of n different wedges, corresponding to the n vertices of P.

In Section 2 we prove some results about coloring point sets with respect to translates of wedges.
In Section 3 we formulate the problem precisely in the dual version, and apply the results of Section 2
to prove Theorem 1.

2 Preparation

Suppose we have two halflines, e and f, both of endpoint O. Then they divide the plane into two parts,
Wy Wy, which we call wedges. A closed wedge contains its boundary, an open wedge does not. Point
O, where the two boundary lines meet, is called the apex of the wedges. The angle of a wedge is the
angle between its two boundary halflines, measured inside the wedge. That is, the sum of the angles of
Wy and Ws is 2w. Now let W be a wedge, and X be a point in the plane. A translate of W such that
its apex is at X, is denoted by W (X). More generally, for points X1, Xo,... Xx, W(X1, X2,... Xk)
denotes the minimal translate of W (for containment) whose closure contains Xi, Xo,... X;. The set
of all translates of W is denoted by Tr"'. Let —W denote the reflection of W about the origin.

Definition 1. Suppose that W = { W, | i € I } is a collection of wedges. W is said to be non-
conflicting or simply NC, if there is a constant k& with the following property. Any finite set of points
S can be colored with two colors such that any translate of a wedge W € W that contains at least k
points of S, contains a point of both colors.

For any fixed W and S, we can and will assume without loss of generality that the points of S are
in general position with respect to W, that is, they do not determine a line parallel to the boundary
line of any W € W. Indeed, if there are two such points, slightly perturb the points. It is easy to see
that every subset of the original point set that can be cut off by a translate of a W € W, can also be
cut off the perturbed point set.

First suppose that we have only one open wedge, that is, W = {W}.

Lemma 1. A single wedge is NC.

Proof of Lemma 1. Let S be a finite point set and W a wedge. We prove the statement with k = 3,
that is, S can be colored with two colors such that any translate of W that contains at least 3 points
of S, contains a point of both colors. Suppose first that the angle of W is at least w. Then W is the
union of two halfplanes, A and B. Take the translate of A (resp. B) that contains exactly two points
of S, say, A; and As (resp. By and Bs). There might be coincidences between A, As and By, Bo,



therefore the set {4, A, By, Bo} contains two, three, or four different points. But in any case, we
can color {Ay, Ay, By, Bo} such that Ay and Ag (resp. Bp and Bs) are of different colors. Now, if a
translate of W contains three points, it contains either A; and Ay, or By and By, and we are done.

Suppose now that the angle of W is less than w. We give two proofs in this case, since we will apply
the ideas of both proofs later. In fact, we show that in this case the NC property holds with k£ = 2.
We can assume that the positive z-axis is in W, and that no two points have the same y-coordinate.
Both of these can be achieved by an appropriate rotation. We say that X <, Y if the y-coordinate of
X is smaller than the y-coordinate of Y. This ordering is called the y-ordering. A subset I of S is an
interval of SIfVX <, Y <, Ze€S: X, Ze€l—-Y el

The boundary of S with respect to W, BdW(S) = {X € P: W(X)N S = 0}. Note that a translate
of W always intersects the boundary in an interval. For each X € Bd"(S) the shadow of X is
SEV(X)={Y € S: W(Y)NBdV (S) = X}. Observe that VX, Y € Bd"(S) : SW" (X)nSAV (Y) = 0.

For the first proof, color the points of the boundary alternating, according to the order <,. For
every boundary point X, color every point in the shadow of X to the other color than X. Color the
rest of the points arbitrarily. Any translate of W that contains at least two points, contains one or
two boundary points. If it contains one boundary point, then the other point is in its shadow, so they
have different colors. If it contains two boundary points, then they are consecutive points according
to the y-order, so they have different colors again. This finishes the first proof.

Figure 1: Z replaces X in W (2;y).

For the second proof, for any fixed y, let W (2;y) be the translate of W which (1) contains at most
two points of S, (2) its apex has y-coordinate y, and (3) its apex has minimal z-coordinate. It is easy to
see that for any y, W (2;y) is uniquely defined. Examine, how W (2;y) changes as y runs over the real
numbers. If y is very small (smaller than the y-coordinate of the points of S), then W (2;y) contains
two points, say X and Y, and one more on its boundary. As we increase y, the apex of W (2;y) changes
continuously. How can the set {X,Y}, of the two points in W (2;y) change? For a certain value of y,
one of them, say, X, moves to the boundary. At this point we have Y inside, and two points, X, and
Z on the boundary. If we slightly further increase y, then Z replaces X, that is, Y and Z will be in
W(2;y) (see Figure 1). As y increases to infinity, the set {Z,Y}, could change several times, but the



same way. Define a graph whose vertices are the points of S, and two vertices, U and V are connected
iff V replaced U during the procedure. We get two paths, P; and P,. The pair (P, P») is called the
path decomposition of S with respect to W, of order two.

On Figure 2, two examples are given. The vertices of P, are X1, Xs,..., and the vertices of P
are Y1,Ys,.... On both examples, the translates of W are given in the positions when some point is
replacing another.

Color the vertices of P; red, the vertices of P, blue. Observe that each translate of W that contains
at least two points, contains at least one vertex of both P, and P». This completes the second proof.
O
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Figure 2: Path decompositions of order two. P = X1 Xo..., b =Y Ys....

Now we can turn to the case when we have translates of two wedges at the same time. We distinguish
several cases according to the relative position of the two wedges, V and W.

Type 1 (Big): One of the wedges has angle at least .

For the other cases, we can assume without loss of generality that W contains the positive z-axis.

Extend the boundary halflines of W to lines, they divide the plane into four parts, Upper, Lower, Left,
and Right, which is W itself. See Figure 3.

Type 2 (Halfplane): One side of V' is in Right and the other one is in Left. That is, the union
of the wedges cover a halfplane. See Figure 4.

Type 3 (Contain): Either (i) one side of V is in Upper, the other one is in Lower, or (ii) both
sides are in Right or (iii) both sides are in Left. See Figure 5.

Type 4. (Hard): One side of V is in Left and the other one is in Upper or Lower. This will be
the hardest case. See Figure 6.
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Figure 3: Wedge W

Figure 4: Type 2 (Halfplane)

Type 5. (Special): Either (i) one side of V' is in Right and the other one is in Upper or Lower, or
(ii) both sides are in Upper, or (iii) both sides are in Lower. That is, the union of the wedges is in an
open halfplane whose boundary contains the origin, but none of them contain the other. See Figure 7.

It is not hard to see that there are no other possibilities. Observe that two wedges corresponding

to the vertices of a convex polygon cannot be of type 1 (Big) or of type 5 (Special). This will be used
in the proof of Theorem 1.

It is shown in [P08] that if W = {V, W} is a set of two wedges of type 5 (Special), then W is not
NC. In a series of Lemmas we show that all other pairs are NC.

Figure 5: Type 3 (Contain)



Figure 7: Type 5 (Special)

Lemma 2. Let W = {V, W} be a set of two wedges, of type 38 (Contain). Then W is NC.

Suppose that U is a wedge that contains the positive x-axis and has angle less than 7. For any
k > 0, and point set S, let Trg(S) be the set of translates of U that contain exactly k points of S.

Just like in the proof of Lemma 1, for any fixed y, and k > 0, let U(k;y) be the translate of U
which (1) contains at most k points of S, (2) its apex has y-coordinate y, and (3) its apex has minimal
x-coordinate. If y is very small, then U(k;y) contains k points, say X1, Xs,..., Xk, and one more on
its boundary. As we increase y, the apex of U(k;y) changes continuously. For a certain value of y, one
of X1,Xs,..., Xy, say, X1, moves to the boundary. At this point we have Xs, ..., X inside, and two
points, X7, and X/ on the boundary. If we slightly further increase y, then X7 replaces X1, that is,
X1 and Xo,..., X} will be in U(k;y). As y increases to infinity, some other points could be replaced
similarly. Define a graph whose vertices are the points of S, and two vertices, X and Y are connected
iff X replaced Y during the procedure. We get k paths, PlU,PQU, . ,Pg. Each translate of U that
contains at least k points of S, contains at least one vertex of each of PV, PY ... ,P]g. The k-tuple
(PlU, PQU, . ,P,g) is called the path decomposition of S with respect to W, of order k.

Proof of Lemma 2. We can assume that W DV or W D —V and W contains the positive z-axis.
Let (P1W,P2W, . ,PIZV) be the path decomposition of S with respect to W, of order k.

Observe that any translate of V intersects any PiW in an interval of it. Indeed, if X7 <, X5 <,
X3 € PZ-W, then Xy € W(Xl,Xg) N —W(Xl,Xg), which is a subset of V(Xl,Xg) N —V(Xl,Xg). See
Figure 8.

We show that we can color the points of S with red and blue such that any translate of W which
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Figure 8: W(Xl,Xg) N —W(Xl,Xg) C V(Xl,Xg) N —V(Xl,Xg).

contains at least 4 points, and any translate of V' which contains at least 14 points, contains points of
both colors. Consider (PF/,P;V,P?W,PX/), the path decomposition of S with respect to W, of order
4. We color P/V and P}V such that every W’ € Tr}V(S) contains a blue point of them, and every
Ve Tr;/(PIW U PJV) contains points of both colors. Similarly, we color P?YV and P}V such that every
W’ € Tr}V(S) contains a red point of them, and every V' € TrY (P}V U P}V) contains points of both
colors. Finally, we color the rest of the points R = S\ (P/V U PV U P}¥ U PV) such that every
V' € TrY (R) contains points of both colors.

Recall that for any W' € Tr}V(S), W NPV | =W nPY| =W nPY =W nPV| =1 For
any X € P/V, Y € P)V | if there is a W’ € Tr}V(S) with W/ N P/Y = {X} and W' N P)Y = {Y}, then
we say that X and Y are friends. If X (resp. Y') has only one friend Y (resp. X), then we call it a
fan (of Y, resp. of X). If X or Y has at least one fan, then we say that it is a star. Those points that
are neither fans, nor stars are called regular.

For an example, see Firgure 2. On the left figure, Y] is a star, its fans are Xs and X3, the other
points are regular. On the right, Y5 is a star, its fan is X5, the other points are regular.

Suppose first that all points of P}V and P}V are regular. Color every third point of P}V, red and
the others blue. In PQW, color the friends of the red points blue, and color the rest of the points of P2W
(every third) red. For any W’ € Tr}V, W/ N P/Y and W/ N PV are friends, therefore, at least one of
them is blue. On the other hand, any V' € TrY (P}V U PJV) contains three consecutive points of P}V
or PQW, and they have both colors.

Suppose now that not all the points of le and P2W are regular. Color all stars blue. The first and
last friend of a star, in the y-ordering, is either a star or a regular vertex, the others are fans. Color
the friends of each star alternatingly, according to the y-ordering, starting with blue, except the last
two friends; color the last one blue, the previous one red. The so far uncolored regular points of P1W
and PZW form pairs of intervals. We color each such pair of interval the same way as we did in the
all-regular case, coloring the first point of each pair of intervals red. See Figure 9.

Clearly, if W € Tr}” then it contains at least one blue point of PV UPYY. If V! € TrY (PV UPR)Y),
then it contains four consecutive points of P1W or PQW, say, X1, X9, X3, X4, in P1W. IfX <, Y <y
Z € PV NV’ and Y is a star, then V'’ must contain all fans of Y as well. Indeed, the fans of Y are



in W(X,Z)\ (W(X)UW(Z)), and by our earlier observations, this is in V (X, Z) C V'. So, if either
Xo or X3 is a star, then V'’ contains a red point, since every star has a red fan. Since the star itself
is blue, we are done in this case. If X7, Xo, X3, X4 contains three consecutive regular vertices then we
are done again, by the coloring rule for the regular intervals. So we are left with the case when X; and
X, are stars, Xo and X3 are regular. But in this case V’ also contains the common friend Y of X5 and
X3 in PQW, which is also a regular vertex. By the coloring rule for the regular intervals, one of Y, X,
and X3 is red, the other two are blue, so we are done.

QWM
P2W

b r b r b
I:iwbrb b b r b
WW\/\V
P
2 b r b b

Figure 9: Two examples of coloring of P1W U P2W . Friends are connected by edges.

For P?}/V U PZV we use the same coloring rule as for P1W U P2W but we switch the roles of the colors.
So any W’ € Tr}V contains at least one red point of P}V U P}V and any V' € TrY (P}V U P}V) contains
both colors.

Finally, we have to color the rest of the points R = S\ (P/V U P}V U P}V U P}V) such that every
V' € TrY (R) contains points of both colors. This can be achieved by the first proof of Lemma 1.

Now any W’ € Tr}" contains at least one blue and at least one red point. If V' € Tr},, then either
it contains at least two points of R = P\ (P/Y UPYY UP UP}V), or at least seven points of P}V U P}V,
or at least seven points of P?YV U PIV, and in all cases it contains points of both colors. This completes
the proof of Lemma 2. [J

Definition 2. Suppose that W = {V, W} is a pair of wedges. W is said to be asymmetric non-
conflicting or simply ANC, if there is a constant k with the following property. Any finite set of points
S can be colored with red and blue such that any translate of V' that contains at least k points of S,
contains a red point, and any translate of W that contains at least k points of .S, contains a blue point.

The next technical result allows us to simplify all following proofs.

Lemma 3. If a pair of wedges is not of type Special, and ANC, then it is also NC.



Proof of Lemma 3. We can assume without loss of generality that V' contains the positive z-axis, and
W contains either the positive or the negative z-axis. Suppose that {V, W} is ANC, let k& > 0 arbitrary,
and let S be a set of points. First we color Bd" (S). Let U be a wedge that also contains the positive
r-axis, but has a very small angle. Then translates of V and translates of U both intersect Bd" (S) in
its intervals. Clearly, the pair {U, W} is of type Contain, therefore, by Lemma 2, we can color Bd" ()
such that any translate of W, W’ € Tr}V (BdY (S)) and any translate of U, U’ € TrY,(Bd" (S)) contains
both colors. But then any translate of V, V' € Tr},(Bd" (S)) contains both colors as well.
Now we have to color S\ Bd¥ (S). We divide it into three parts as follows.

Sy, ={X € S\ Bd"(S) | VY € V(X) N Bd" (S),Y is blue},

Sy ={X €S\ Bd"(9) | VY € V(X)NBd"(S),Y is red},
So =S\ (Bd"(S)U S U Sy).

Any translate V/ € TrY that intersects S}, in at least one point, must contain at least one blue
point, from Bd" (S), so we only have to make sure that it contains a red point too. Similarly, any
V! € TrYV that intersects Sy in at least one point, must contain a red point, and any V' € TrY that
intersects Sy must contain points of both colors.

Thus, we can simply color Sy such that any W’ € Trd(Sp) contains both colors, which can be
done by Lemma 1.

With S}, and with Sy, respectively, we proceed exactly the same way as we did with S itself, but
now we change the roles of V' and W. We get the (still uncolored) subsets Sb,bv Sb,rv Sb,ov Sr,bv Sr.r,
Sr,o with the following properties.

e Any translate V' € Tr¥ or W’ € Tr'V, that intersects S}, , (resp. Sry) in at least one point,
must contain at least one blue (resp. red) point.

e Any translate V' € TrV that intersects Sb,r (resp. Sr,b) contains a blue (resp. red) point, and

any translate W’ € Tr" that intersects Sb,r (resp. S

 b) contains a red (resp. blue) point.

e Any translate V' € Tr" that intersects St (resp. Sro) contains a blue (resp. red) point, and
any translate W’ € Tr" that intersects Sh.o (resp. Sro) contains points of both colors.

Color all points of S}, 1, and Sy, , red, color all points of Sy and Sy blue. Finally, color S} | using

the ANC property of the pair (V, W), and similarly, color S}, also using the ANC property, but the
roles of red and blue switched. Now it is easy to check that in this coloring any translate of V or W
that contains sufficiently many points of S, contains a point of both colors. [J

Remark. In [P08] it has been proved that if {V, W} is a Special pair, then {V, W} is not ANC. So,
the following statement holds as well.
Lemma 3. If a pair of wedges is ANC, then it is also NC.



Lemma 4. Let W = {V,W} be a set of two wedges, of type 1 (Big). Then W is NC.

Proof of Lemma 4. By Lemma 3, it is enough to show that {V, W} is ANC. Let W be the wedge
whose angle is at least m. Then W is the union of two halfplanes, say, H; and Hs. Translate both
halfplanes such that they contain exactly one point of S, denote them by X; and Xs, respectively.
Note that X; may coincide with Xs. Color X; and X5 red, and all the other points blue. Then any
translate of W that contains at least one point, contains a red point, and any translate of V that
contains at least three points, contains a blue point. [

Lemma 5. Let W = {V, W} be a set of two wedges, of type 2 (Halfplane). Then W is NC.

Proof of Lemma 5. Again, it is enough to show that they are ANC. Since {V,W} is of type 2
(Halfplane), Bd" (S) and Bd" (S) have at most one point in common. If Bd"(S) and Bd" (S) are
disjoint, then color Bd" (S) blue, Bd" (S) red, and the other points arbitrarily. Then any nonempty
translate of V' (resp. W) contains a blue (resp. red) point.

Otherwise, let X be their common point. Let P = Bd" (S) U Bd"(S) \ X, and consider its V-
boundary, Bd" (P), and W-boundary, Bd" (P). Clearly, each point in P = Bd"(S)\ X belongs to
BdV (P), and each point in P = Bd"(S) \ X belongs to Bd" (P).

If BdV(P) and Bd" (P) are disjoint, then color Bd" (S) blue, Bd" (P) and the other points red.
Then any nonempty translate of V' contains a blue point. Suppose that we have a translate of W with
two points, both blue. Then it should contain X, and a point of Bd" (P). But this contradicts our
assumption that Bd" (P) and Bd" (P) are disjoint. So, any translate of W which contains at least
two points of .S, contains a red point.

If BdY(P) and Bd" (P) are not disjoint, then they have one point in common, let Y be their
common point. If Y belongs to Bd" (P), then color Bd" (S) blue, Bd" (P) and the other points red.
Then, by the same argument as before, any nonempty translate of V' contains a blue point, and any
translate of W which contains at least two points of S, contains a red point. Finally, if Y belongs to
BdY (P), then we proceed analogously, but the roles of V and W, and the colors, are switched. [J

Lemma 6. Let W = {V, W} be a set of two wedges, of type 4 (Hard). Then W is NC.

Proof of Lemma 6. As usual, we only prove that {V,W} is ANC. Assume that W contains the
positive z-axis. Just like in the definition of type 4 (Hard), extend the boundary halflines of W to
lines, they divide the plane into four parts, Upper, Lower, Left, and Right, which is W itself. We can
assume without loss of generality that V contains the negative z-axis, one side of V' is in Upper, and
one side is in Left.

Observe that if a translate of V' and a translate of W intersect each other, then one of them contains
the other one’s apex.

Claim 1. For any point set P and X € P, either Bd (P \ X)\ Bd"(P) =0 or Bd" (P \ X)\
Bd" (P) = 0.

Proof of Claim 1. Suppose on the contrary that Y € BdY (P \ X)\ Bd"(P) and Z € Bd" (P \
X)\ Bd"(P). Then X € V(Y) and X € W(Z), so V(Y) and W(Z) intersect each other, therefore,
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one of them contains the other one’s apex, say, Z € V(Y). But this is a contradiction, since Y is a
boundary point of P\ X.

Return to the proof of Lemma 6. Color Bd" (S) \ Bd" (S) red, and Bd" (S)\ Bd" (S) blue, the
interior points arbitrarily. Now consider the points of Bd" (S) N Bd"(S). For any X € Bd"(S) N
BdV(S), if BdV(S\ X)\ BdY(S) # 0, then color it red, if Bd" (S \ X)\ Bd" (S) # 0, then color it
blue. For each of the remaining points Y we have Bd" (S\Y)\ Bd"(S) = Bd"V (S\Y)\ Bd" (S) = 0.
Color each of these points such that they have the opposite color than the the previous point of
Bd" (S) N BdY(S), in the y-ordering.

To prove that this coloring is good, let V' € Try , V/NS = {X,Y}. Ifit intersects Bd" (S)\Bd" (S),
we are done. So assume that V' N Bd" (S) C BdV (S) N BdW(S). Let X € V' N BdY(S). If X is red,
then by the coloring rule, Bd" (S \ X) \ Bd"(S) = 0. But then Y is also a V-boundary point, so
we have Y € BdY (S) N Bd" (S). Again we can assume that Y is red, so Bd" (S \Y)\ Bd"(S) = 0.
Suppose that X <, Y. Since V' NS = {X,Y}, X and Y are consecutive points of Bd" (S) N Bd" (S).
Now it is not hard to see that Bd" (S \ Y)\ Bd"(S) = (. Therefore, by the coloring rule, X and Y
have different colors. For translates of W the argument is analogous, with the colors switched. O

Now we turn to the case when we have more than two wedges.

Lemma 7. For any s,t > 0 integers, there is a number f(s,t) with the following property.

Let W = {Wy,Ws, ..., Wi} be a set of t wedges, such that any pair {W;,W;} is NC, and let S be
a set of points. Then S can be decomposed into t parts, S1,S2,...,S, such that for i =1,2,...,t, for
any translate W/ of Wy, if [W/ 0S| > f(s,t) then |[W/ N S;| > s.

)

Proof of Lemma 7. The existence of f(1,2) is equivalent to the property that the corresponding two
wedges are ANC. Now we show that f(s,2) exists for every s. Let V and W be two wedges that form
a NC pair. Let PV, PY, ... ,P;éf be the path decomposition of S of order s?f(1,2), with respect
toV. Fori=1,2,...,s, let

(1,2)

— | isf(12) 14
Hi=Ujm s,y -

For each H;, take the W-path decomposition, PV (H;), ... ,P!}/(l ) (H;), and for j =1,2,...,s, let

1] = UG s oy P (D)
For every i,57 = 1,2,...,s, color Hij, such that any translate of V' (resp. W) that intersects it in at
least f(1,2) points, contains at least one red (resp. blue) point of it. This is possible, since the pair
{V,W} is ANC.
Consider a translate V/ of V' that contains at least 82f(1,2) points of S. For every 4, V' intersects
H; in sf(1,2) points, so there is a j such that it intersects H; in at least f(1,2) points. Therefore, V'
contains at least one red point of Hij, so at least s red points of S.
Consider now a translate W’ of W that contains at least s2f(1,2) points of S. There is an i such that

W' intersects H; in at least sf(1,2) points. Therefore, it intersects each of P}V (H;),... ,P!}/(l ) (H;)

Y
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in at least one point, so for j = 1,2,...,s, W’ intersects Hf in at least f(1,2) points. Consequently,
it contains at least one blue point of each HZ.J, so at least s blue points of S.

Now let s,t > 2 fixed and suppose that f(s’,t — 1) exists for every s'. Let {Wy, Wa,...,W;} be
our set of wedges, such that any pair of them is NC. Let ' = f(s,2). Partition our point set S into
51,55, ..., S,_; such that for i = 1,2,...,t—1, for any translate W/ of W;, if |W/NS| > f(s',t—1) then
|[W! NSl >s = f(s,2). For each i = 1,2,...,t— 1, partition S/ into two parts, S/ and S?, such that
for any translate W/ of W, if [W/NS!| > f(s,2) then [W/NS!| > s, and for any translate W/ of W4, if
W/ NS!| > f(s,2) then [W/ NSt > s. Finally, for i =1,2,...,t —1,let S; = S/ and let S; = U;;llS;f.
For i =1,2,...,t — 1, any translate W/ of W, if [W/ N S| > f(s',t — 1) then |W/ NS} > s = f(s,2),
so |W/ N S;| > s,

And for any translate W/ of Wy, if |W/ N S| > f(s',t — 1), then for some i = 1,2,...t — 1,
W/ nSi| > % > f(s,2), therefore, W/ N S > s, so |W/ NSy > s. This concludes the proof of
Lemma 7. U
Remark. The proofs of Lemmas 2, 4, 5, and 6 imply that f(1,2) < 8. Combining it with the proof of
Lemma 7 we get the bound f(s,t) < (8s)%

Lemma 8. A set of wedges W = {W1,Wa,... , W;} is NC if and only if any pair {W;, W;} is NC.

Proof of Lemma 8. Clearly, if some pair {IW;, W;} is not NC, then the whole set )V is not NC either.
Suppose that every pair {W;, W;} is NC. Decompose S into ¢ parts Sy, Sa,...,S; with the property
that for ¢ = 1,2,... ¢, for any translate W/ of Wj, if [W/ N S| > f(3,t) then |W/ N S;| > 3. Then, by
Lemma 1, each S; can be colored with red and blue such that if [WW/ N S;| > 3 then W/ contains points
of both colors. So this coloring of S has the property that for ¢ = 1,2,...,¢, for any translate W/ of
Wi, if W/ N S| > f(3,t) then it contains points of both colors. O

3 Proof of Theorem 1.

Suppose that P is an open convex polygon of n vertices and P = { P, | i € I } is a collection of
translates of P which forms an M-fold covering of the plane. We will set the value of M later. Let
m be the minimum distance between any vertex and non-adjacent side of P. Take a square grid G of
basic distance m/2. Obviously, any translate of P intersects at most K = 4w (diam(P) +m)?/m? basic
squares. For each (closed) basic square B, using its compactness, we can find a finite subcollection of the
translates such that they still form an M-fold covering of B. Take the union of all these subcollections.
We have a locally finite M-fold covering of the plane. That is, every compact set is intersected by
finitely many of the translates. It is sufficient to decompose this covering. For simplicity, use the same
notation P = { P, | i € I } for this subcollection.

We formulate and solve the problem in its dual form. Let O; be the center of gravity of P;. Since P
is an M-fold covering of the plane, every translate of P, the reflection of P through the origin, contains
at least M points of the locally finite set O ={ O; | i €I }.
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The collection P = { P; | i € I } can be decomposed into two coverings if and only if the set
O =1{0;|i€l} can be colored with two colors, such that every translate of P contains a point of
both colors.

Let W = {Wy,Wa,...,W,} be the set of wedges that correspond to the vertices of P. By the
convexity of P, no pair {W;, W;} is of type 5 (Special), therefore, by the previous Lemmas, each pair
is NC. Consequently, by Lemma 8, W is NC as well. So there is a k with the following property.

* Any set of points S can be colored with two colors such that any translate of Wi, Wy, ..., W,, that
contains at least k points of S, contains points of both colors.

Choose M such that M > kK, and color the points of O in each basic square separately, with
property *.

Since any translate P’ of P intersects at most K basic squares of the grid G, P’ contains at least
M/K > k points of O in the same basic square B’. By the choice of the grid G, B’ contains at most
one vertex of P/, hence B'N P’ = B'NW, where W is a translate of some W; € W. So, by property
* P’ contains points of @ N B’ of both colors. This concludes the proof of Theorem 1. O

4 Concluding Remarks

Throughout this paper we made no attempt to optimize the constants. However, it may be an inter-
esting problem to determine (asymptotically) the smallest &k in the proof of Theorem 1.

Another interesting question is to decide whether this constant depends only on the number of
vertices of the polygon or on the shape as well. In particular, we cannot verify the following.

Conjecture. There is a constant k such that any k-fold covering of the plane with translates of a
convex quadrilateral can be decomposed into two coverings.

One can also investigate whether a given covering can be decomposed into s coverings, for some
fixed s. For any planar set P and s > 1, if it exists, let k = k(s, P) be the smallest number such that
any k-fold covering of the plane with translates of P can be decomposed into s coverings. By Theorem
1, k(2, P) exists for any open convex polygon P. With a slight modification of its proof, we get the
following more general result.

Theorem 1°. For any open convez polygon P, and any s, there exists a (smallest) number k = k(s, P)
such that any k-fold covering of the plane with translates of P can be decomposed into s coverings.

Our proof gives k(s, P) < Kp(8s)2n71, where Kp is the constant K from the proof of Theorem 1
and n is the number of vertices of P. For centrally symmetric open convex polygons Pach and Téth
[PT07] established a much better upper bound, which is quadratic in s. Recently, Aloupis et al. [A0§]
improved it to linear. They showed that, for any centrally symmetric open convex polygon P, there is
an ap such that k(s, P) < aps. The best known lower bound on k(s, P) is (s, P) > [4s/3] — 1 [PTO7].

Our proofs use the assumption that the covering is locally finite, and for open polygons we could
find a locally finite subcollection which is still a k-fold covering. Still, we strongly believe that Theorem
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1 holds for closed convex polygons as well.

Acknowledgement. We are very grateful to the anonymous referee for his remarks.
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