
Convex polygons are 
over-de
omposableDömötör Pálvölgyi∗ Géza Tóth†Abstra
tWe show that for any open 
onvex polygon P there is a 
onstant k(P ) su
h that any k(P )-fold
overing of the plane with translates of P 
an be de
omposed into two 
overings.1 Introdu
tionLet P = { Pi | i ∈ I } be a 
olle
tion of planar sets. It is a k-fold 
overing if every point in the planeis 
ontained in at least k members of P. A 1-fold 
overing is simply 
alled a 
overing.De�nition. A planar set P is said to be 
over-de
omposable if the following holds. There exists a
onstant k = k(P ) su
h that every k-fold 
overing of the plane with translates of P 
an be de
omposedinto two 
overings. J. Pa
h proposed the problem of determining all 
over-de
omposable sets in 1980.For related problems, 
onje
tures, see [BMP05℄, Chapter 2.1.Conje
ture. (J. Pa
h) All planar 
onvex sets are 
over-de
omposable.This 
onje
ture has been veri�ed in three spe
ial 
ases.Theorem A. (i) [P86℄ Every 
entrally symmetri
 open 
onvex polygon is 
over-de
omposable.(ii) [MP86℄ The open unit dis
 is 
over-de
omposable.(iii) [TT07℄ Every open triangle is 
over-de
omposable.In this note we verify the 
onje
ture for open 
onvex polygons.Theorem 1. Every open 
onvex polygon is 
over-de
omposable.Just like in [P86℄ and in [TT07℄, we formulate and solve the problem in its dual form. That is,suppose P is a polygon of n verti
es and we have a 
olle
tion P = { Pi | i ∈ I } of translates of P .Let Oi be the 
enter of gravity of Pi. The 
olle
tion P is a k-fold 
overing of the plane if and only ifevery translate of P̄ , the re�e
tion of P through the origin, 
ontains at least k points of the 
olle
tion
O = { Oi | i ∈ I }.
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The 
olle
tion P = { Pi | i ∈ I } 
an be de
omposed into two 
overings if and only if the set
O = { Oi | i ∈ I } 
an be 
olored with two 
olors, su
h that every translate of P̄ 
ontains a point ofboth 
olors.Divide the plane into small regions, say, squares, su
h that ea
h square 
ontains at most one vertexof any translate of P̄ . If a translate of P̄ 
ontains su�
iently many points of O, then it 
ontains manypoints of O in one of the little squares. We 
olor the points of O separately in ea
h of the squares.If we 
on
entrate on points in just one of the little squares, then instead of translates of P̄ we 
an
onsider translates of n di�erent wedges, 
orresponding to the n verti
es of P .In Se
tion 2 we prove some results about 
oloring point sets with respe
t to translates of wedges.In Se
tion 3 we formulate the problem pre
isely in the dual version, and apply the results of Se
tion 2to prove Theorem 1.2 PreparationSuppose we have two hal�ines, e and f , both of endpoint O. Then they divide the plane into two parts,
W1 W2, whi
h we 
all wedges. A 
losed wedge 
ontains its boundary, an open wedge does not. Point
O, where the two boundary lines meet, is 
alled the apex of the wedges. The angle of a wedge is theangle between its two boundary hal�ines, measured inside the wedge. That is, the sum of the angles of
W1 and W2 is 2π. Now let W be a wedge, and X be a point in the plane. A translate of W su
h thatits apex is at X, is denoted by W (X). More generally, for points X1,X2, . . . Xk, W (X1,X2, . . . Xk)denotes the minimal translate of W (for 
ontainment) whose 
losure 
ontains X1,X2, . . . Xk. The setof all translates of W is denoted by TrW . Let −W denote the re�e
tion of W about the origin.De�nition 1. Suppose that W = { Wi | i ∈ I } is a 
olle
tion of wedges. W is said to be non-
on�i
ting or simply NC, if there is a 
onstant k with the following property. Any �nite set of points
S 
an be 
olored with two 
olors su
h that any translate of a wedge W ∈ W that 
ontains at least kpoints of S, 
ontains a point of both 
olors.For any �xed W and S, we 
an and will assume without loss of generality that the points of S arein general position with respe
t to W, that is, they do not determine a line parallel to the boundaryline of any W ∈ W. Indeed, if there are two su
h points, slightly perturb the points. It is easy to seethat every subset of the original point set that 
an be 
ut o� by a translate of a W ∈ W, 
an also be
ut o� the perturbed point set.First suppose that we have only one open wedge, that is, W = {W}.Lemma 1. A single wedge is NC.Proof of Lemma 1. Let S be a �nite point set and W a wedge. We prove the statement with k = 3,that is, S 
an be 
olored with two 
olors su
h that any translate of W that 
ontains at least 3 pointsof S, 
ontains a point of both 
olors. Suppose �rst that the angle of W is at least π. Then W is theunion of two halfplanes, A and B. Take the translate of A (resp. B) that 
ontains exa
tly two pointsof S, say, A1 and A2 (resp. B1 and B2). There might be 
oin
iden
es between A1, A2 and B1, B2,2



therefore the set {A1, A2, B1, B2} 
ontains two, three, or four di�erent points. But in any 
ase, we
an 
olor {A1, A2, B1, B2} su
h that A1 and A2 (resp. B1 and B2) are of di�erent 
olors. Now, if atranslate of W 
ontains three points, it 
ontains either A1 and A2, or B1 and B2, and we are done.Suppose now that the angle of W is less than π. We give two proofs in this 
ase, sin
e we will applythe ideas of both proofs later. In fa
t, we show that in this 
ase the NC property holds with k = 2.We 
an assume that the positive x-axis is in W , and that no two points have the same y-
oordinate.Both of these 
an be a
hieved by an appropriate rotation. We say that X <y Y if the y-
oordinate of
X is smaller than the y-
oordinate of Y . This ordering is 
alled the y-ordering. A subset I of S is aninterval of S if ∀X <y Y <y Z ∈ S : X,Z ∈ I → Y ∈ I.The boundary of S with respe
t to W , BdW (S) = {X ∈ P : W (X)∩ S = ∅}. Note that a translateof W always interse
ts the boundary in an interval. For ea
h X ∈ BdW (S) the shadow of X is
ShW (X) = {Y ∈ S : W (Y )∩BdW (S) = X}. Observe that ∀X,Y ∈ BdW (S) : ShW (X)∩ShW (Y ) = ∅.For the �rst proof, 
olor the points of the boundary alternating, a

ording to the order <y. Forevery boundary point X, 
olor every point in the shadow of X to the other 
olor than X. Color therest of the points arbitrarily. Any translate of W that 
ontains at least two points, 
ontains one ortwo boundary points. If it 
ontains one boundary point, then the other point is in its shadow, so theyhave di�erent 
olors. If it 
ontains two boundary points, then they are 
onse
utive points a

ordingto the y-order, so they have di�erent 
olors again. This �nishes the �rst proof.
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Figure 1: Z repla
es X in W (2; y).For the se
ond proof, for any �xed y, let W (2; y) be the translate of W whi
h (1) 
ontains at mosttwo points of S, (2) its apex has y-
oordinate y, and (3) its apex has minimal x-
oordinate. It is easy tosee that for any y, W (2; y) is uniquely de�ned. Examine, how W (2; y) 
hanges as y runs over the realnumbers. If y is very small (smaller than the y-
oordinate of the points of S), then W (2; y) 
ontainstwo points, say X and Y , and one more on its boundary. As we in
rease y, the apex of W (2; y) 
hanges
ontinuously. How 
an the set {X,Y }, of the two points in W (2; y) 
hange? For a 
ertain value of y,one of them, say, X, moves to the boundary. At this point we have Y inside, and two points, X, and
Z on the boundary. If we slightly further in
rease y, then Z repla
es X, that is, Y and Z will be in
W (2; y) (see Figure 1). As y in
reases to in�nity, the set {Z, Y }, 
ould 
hange several times, but the3



same way. De�ne a graph whose verti
es are the points of S, and two verti
es, U and V are 
onne
tedi� V repla
ed U during the pro
edure. We get two paths, P1 and P2. The pair (P1, P2) is 
alled thepath de
omposition of S with respe
t to W , of order two.On Figure 2, two examples are given. The verti
es of P1 are X1,X2, . . ., and the verti
es of P2are Y1, Y2, . . .. On both examples, the translates of W are given in the positions when some point isrepla
ing another.Color the verti
es of P1 red, the verti
es of P2 blue. Observe that ea
h translate of W that 
ontainsat least two points, 
ontains at least one vertex of both P1 and P2. This 
ompletes the se
ond proof.
�

Y1

Y2

Y3

X2

X1

X4

X3

Y1

X1

Y2

X2

X3

X4

Figure 2: Path de
ompositions of order two. P1 = X1X2 . . ., P2 = Y1Y2 . . ..Now we 
an turn to the 
ase when we have translates of two wedges at the same time. We distinguishseveral 
ases a

ording to the relative position of the two wedges, V and W .Type 1 (Big): One of the wedges has angle at least π.For the other 
ases, we 
an assume without loss of generality that W 
ontains the positive x-axis.Extend the boundary hal�ines of W to lines, they divide the plane into four parts, Upper, Lower, Left,and Right, whi
h is W itself. See Figure 3.Type 2 (Halfplane): One side of V is in Right and the other one is in Left. That is, the unionof the wedges 
over a halfplane. See Figure 4.Type 3 (Contain): Either (i) one side of V is in Upper, the other one is in Lower, or (ii) bothsides are in Right or (iii) both sides are in Left. See Figure 5.Type 4. (Hard): One side of V is in Left and the other one is in Upper or Lower. This will bethe hardest 
ase. See Figure 6. 4
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V

W W

VFigure 4: Type 2 (Halfplane)Type 5. (Spe
ial): Either (i) one side of V is in Right and the other one is in Upper or Lower, or(ii) both sides are in Upper, or (iii) both sides are in Lower. That is, the union of the wedges is in anopen halfplane whose boundary 
ontains the origin, but none of them 
ontain the other. See Figure 7.It is not hard to see that there are no other possibilities. Observe that two wedges 
orrespondingto the verti
es of a 
onvex polygon 
annot be of type 1 (Big) or of type 5 (Spe
ial). This will be usedin the proof of Theorem 1.It is shown in [P08℄ that if W = {V,W} is a set of two wedges of type 5 (Spe
ial), then W is notNC. In a series of Lemmas we show that all other pairs are NC.
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Figure 7: Type 5 (Spe
ial)Lemma 2. Let W = {V,W} be a set of two wedges, of type 3 (Contain). Then W is NC.Suppose that U is a wedge that 
ontains the positive x-axis and has angle less than π. For any
k > 0, and point set S, let TrU

k (S) be the set of translates of U that 
ontain exa
tly k points of S.Just like in the proof of Lemma 1, for any �xed y, and k > 0, let U(k; y) be the translate of Uwhi
h (1) 
ontains at most k points of S, (2) its apex has y-
oordinate y, and (3) its apex has minimal
x-
oordinate. If y is very small, then U(k; y) 
ontains k points, say X1,X2, . . . ,Xk, and one more onits boundary. As we in
rease y, the apex of U(k; y) 
hanges 
ontinuously. For a 
ertain value of y, oneof X1,X2, . . . ,Xk, say, X1, moves to the boundary. At this point we have X2, . . . ,Xk inside, and twopoints, X1, and X ′

1 on the boundary. If we slightly further in
rease y, then X ′
1 repla
es X1, that is,

X ′
1 and X2, . . . ,Xk will be in U(k; y). As y in
reases to in�nity, some other points 
ould be repla
edsimilarly. De�ne a graph whose verti
es are the points of S, and two verti
es, X and Y are 
onne
tedi� X repla
ed Y during the pro
edure. We get k paths, PU

1 , PU
2 , . . . , PU

k . Ea
h translate of U that
ontains at least k points of S, 
ontains at least one vertex of ea
h of PU
1 , PU

2 , . . . , PU
k . The k-tuple

(PU
1 , PU

2 , . . . , PU
k ) is 
alled the path de
omposition of S with respe
t to W , of order k.Proof of Lemma 2. We 
an assume that W ⊃ V or W ⊃ −V and W 
ontains the positive x-axis.Let (PW

1 , PW
2 , . . . , PW

k ) be the path de
omposition of S with respe
t to W , of order k.Observe that any translate of V interse
ts any PW
i in an interval of it. Indeed, if X1 <y X2 <y

X3 ∈ PW
i , then X2 ∈ W (X1,X3) ∩ −W (X1,X3), whi
h is a subset of V (X1,X3) ∩ −V (X1,X3). SeeFigure 8.We show that we 
an 
olor the points of S with red and blue su
h that any translate of W whi
h6
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V WFigure 8: W (X1,X3) ∩ −W (X1,X3) ⊂ V (X1,X3) ∩ −V (X1,X3).
ontains at least 4 points, and any translate of V whi
h 
ontains at least 14 points, 
ontains points ofboth 
olors. Consider (PW

1 , PW
2 , PW

3 , PW
4 ), the path de
omposition of S with respe
t to W , of order

4. We 
olor PW
1 and PW

2 su
h that every W ′ ∈ TrW
4 (S) 
ontains a blue point of them, and every

V ′ ∈ TrV
7 (PW

1 ∪ PW
2 ) 
ontains points of both 
olors. Similarly, we 
olor PW

3 and PW
4 su
h that every

W ′ ∈ TrW
4 (S) 
ontains a red point of them, and every V ′ ∈ TrV

7 (PW
3 ∪ PW

4 ) 
ontains points of both
olors. Finally, we 
olor the rest of the points R = S \ (PW
1 ∪ PW

2 ∪ PW
3 ∪ PW

4 ) su
h that every
V ′ ∈ TrV

2 (R) 
ontains points of both 
olors.Re
all that for any W ′ ∈ TrW
4 (S), |W ′ ∩ PW

1 | = |W ′ ∩ PW
2 | = |W ′ ∩ PW

3 | = |W ′ ∩ PW
4 | = 1. Forany X ∈ PW

1 , Y ∈ PW
2 , if there is a W ′ ∈ TrW

4 (S) with W ′ ∩ PW
1 = {X} and W ′ ∩ PW

2 = {Y }, thenwe say that X and Y are friends. If X (resp. Y ) has only one friend Y (resp. X), then we 
all it afan (of Y , resp. of X). If X or Y has at least one fan, then we say that it is a star. Those points thatare neither fans, nor stars are 
alled regular.For an example, see Firgure 2. On the left �gure, Y1 is a star, its fans are X2 and X3, the otherpoints are regular. On the right, Y2 is a star, its fan is X2, the other points are regular.Suppose �rst that all points of PW
1 and PW

2 are regular. Color every third point of PW
1 , red andthe others blue. In PW

2 , 
olor the friends of the red points blue, and 
olor the rest of the points of PW
2(every third) red. For any W ′ ∈ TrW

4 , W ′ ∩ PW
1 and W ′ ∩ PW

2 are friends, therefore, at least one ofthem is blue. On the other hand, any V ′ ∈ TrV
7 (PW

1 ∪ PW
2 ) 
ontains three 
onse
utive points of PW

1or PW
2 , and they have both 
olors.Suppose now that not all the points of PW

1 and PW
2 are regular. Color all stars blue. The �rst andlast friend of a star, in the y-ordering, is either a star or a regular vertex, the others are fans. Colorthe friends of ea
h star alternatingly, a

ording to the y-ordering, starting with blue, ex
ept the lasttwo friends; 
olor the last one blue, the previous one red. The so far un
olored regular points of PW

1and PW
2 form pairs of intervals. We 
olor ea
h su
h pair of interval the same way as we did in theall-regular 
ase, 
oloring the �rst point of ea
h pair of intervals red. See Figure 9.Clearly, if W ′ ∈ TrW

4 then it 
ontains at least one blue point of PW
1 ∪PW

2 . If V ′ ∈ TrV
7 (PW

1 ∪PW
2 ),then it 
ontains four 
onse
utive points of PW

1 or PW
2 , say, X1,X2,X3,X4, in PW

1 . If X <y Y <y

Z ∈ PW
1 ∩ V ′ and Y is a star, then V ′ must 
ontain all fans of Y as well. Indeed, the fans of Y are7



in W (X,Z) \ (W (X) ∪ W (Z)), and by our earlier observations, this is in V (X,Z) ⊂ V ′. So, if either
X2 or X3 is a star, then V ′ 
ontains a red point, sin
e every star has a red fan. Sin
e the star itselfis blue, we are done in this 
ase. If X1,X2,X3,X4 
ontains three 
onse
utive regular verti
es then weare done again, by the 
oloring rule for the regular intervals. So we are left with the 
ase when X1 and
X4 are stars, X2 and X3 are regular. But in this 
ase V ′ also 
ontains the 
ommon friend Y of X2 and
X3 in PW

2 , whi
h is also a regular vertex. By the 
oloring rule for the regular intervals, one of Y , X2and X3 is red, the other two are blue, so we are done.
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Figure 9: Two examples of 
oloring of PW
1 ∪ PW

2 . Friends are 
onne
ted by edges.For PW
3 ∪PW

4 we use the same 
oloring rule as for PW
1 ∪PW

2 but we swit
h the roles of the 
olors.So any W ′ ∈ TrW
4 
ontains at least one red point of PW

3 ∪PW
4 and any V ′ ∈ TrV

7 (PW
3 ∪PW

4 ) 
ontainsboth 
olors.Finally, we have to 
olor the rest of the points R = S \ (PW
1 ∪ PW

2 ∪ PW
3 ∪ PW

4 ) su
h that every
V ′ ∈ TrV

2 (R) 
ontains points of both 
olors. This 
an be a
hieved by the �rst proof of Lemma 1.Now any W ′ ∈ TrW
4 
ontains at least one blue and at least one red point. If V ′ ∈ TrV

14, then eitherit 
ontains at least two points of R = P \(PW
1 ∪PW

2 ∪PW
3 ∪PW

4 ), or at least seven points of PW
1 ∪PW

2 ,or at least seven points of PW
3 ∪PW

4 , and in all 
ases it 
ontains points of both 
olors. This 
ompletesthe proof of Lemma 2. �De�nition 2. Suppose that W = {V,W} is a pair of wedges. W is said to be asymmetri
 non-
on�i
ting or simply ANC, if there is a 
onstant k with the following property. Any �nite set of points
S 
an be 
olored with red and blue su
h that any translate of V that 
ontains at least k points of S,
ontains a red point, and any translate of W that 
ontains at least k points of S, 
ontains a blue point.The next te
hni
al result allows us to simplify all following proofs.Lemma 3. If a pair of wedges is not of type Spe
ial, and ANC, then it is also NC.8



Proof of Lemma 3. We 
an assume without loss of generality that V 
ontains the positive x-axis, and
W 
ontains either the positive or the negative x-axis. Suppose that {V,W} is ANC, let k > 0 arbitrary,and let S be a set of points. First we 
olor BdV (S). Let U be a wedge that also 
ontains the positive
x-axis, but has a very small angle. Then translates of V and translates of U both interse
t BdV (S) inits intervals. Clearly, the pair {U,W} is of type Contain, therefore, by Lemma 2, we 
an 
olor BdV (S)su
h that any translate of W , W ′ ∈ TrW

4 (BdV (S)) and any translate of U , U ′ ∈ TrU
14(BdV (S)) 
ontainsboth 
olors. But then any translate of V , V ′ ∈ TrV

14(BdV (S)) 
ontains both 
olors as well.Now we have to 
olor S \ BdV (S). We divide it into three parts as follows.
Sb = {X ∈ S \ BdV (S) | ∀Y ∈ V (X) ∩ BdV (S), Y is blue},
Sr = {X ∈ S \ BdV (S) | ∀Y ∈ V (X) ∩ BdV (S), Y is red},

S0 = S \ (BdV (S) ∪ Sb ∪ Sr).Any translate V ′ ∈ TrV that interse
ts Sb in at least one point, must 
ontain at least one bluepoint, from BdV (S), so we only have to make sure that it 
ontains a red point too. Similarly, any
V ′ ∈ TrV that interse
ts Sr in at least one point, must 
ontain a red point, and any V ′ ∈ TrV thatinterse
ts S0 must 
ontain points of both 
olors.Thus, we 
an simply 
olor S0 su
h that any W ′ ∈ TrW

2 (S0) 
ontains both 
olors, whi
h 
an bedone by Lemma 1.With Sb, and with Sr, respe
tively, we pro
eed exa
tly the same way as we did with S itself, butnow we 
hange the roles of V and W . We get the (still un
olored) subsets Sb,b, Sb,r, Sb,0, Sr,b, Sr,r,
Sr,0 with the following properties.

• Any translate V ′ ∈ TrV or W ′ ∈ TrW , that interse
ts Sb,b (resp. Sr,r) in at least one point,must 
ontain at least one blue (resp. red) point.
• Any translate V ′ ∈ TrV that interse
ts Sb,r (resp. Sr,b) 
ontains a blue (resp. red) point, andany translate W ′ ∈ TrW that interse
ts Sb,r (resp. Sr,b) 
ontains a red (resp. blue) point.
• Any translate V ′ ∈ TrV that interse
ts Sb,0 (resp. Sr,0) 
ontains a blue (resp. red) point, andany translate W ′ ∈ TrW that interse
ts Sb,0 (resp. Sr,0) 
ontains points of both 
olors.Color all points of Sb,b and Sb,0 red, 
olor all points of Sr,r and Sr,0 blue. Finally, 
olor Sb,r usingthe ANC property of the pair (V,W ), and similarly, 
olor Sr,b also using the ANC property, but theroles of red and blue swit
hed. Now it is easy to 
he
k that in this 
oloring any translate of V or Wthat 
ontains su�
iently many points of S, 
ontains a point of both 
olors. �Remark. In [P08℄ it has been proved that if {V,W} is a Spe
ial pair, then {V,W} is not ANC. So,the following statement holds as well.Lemma 3'. If a pair of wedges is ANC, then it is also NC.9



Lemma 4. Let W = {V,W} be a set of two wedges, of type 1 (Big). Then W is NC.Proof of Lemma 4. By Lemma 3, it is enough to show that {V,W} is ANC. Let W be the wedgewhose angle is at least π. Then W is the union of two halfplanes, say, H1 and H2. Translate bothhalfplanes su
h that they 
ontain exa
tly one point of S, denote them by X1 and X2, respe
tively.Note that X1 may 
oin
ide with X2. Color X1 and X2 red, and all the other points blue. Then anytranslate of W that 
ontains at least one point, 
ontains a red point, and any translate of V that
ontains at least three points, 
ontains a blue point. �Lemma 5. Let W = {V,W} be a set of two wedges, of type 2 (Halfplane). Then W is NC.Proof of Lemma 5. Again, it is enough to show that they are ANC. Sin
e {V,W} is of type 2(Halfplane), BdV (S) and BdW (S) have at most one point in 
ommon. If BdV (S) and BdW (S) aredisjoint, then 
olor BdV (S) blue, BdW (S) red, and the other points arbitrarily. Then any nonemptytranslate of V (resp. W ) 
ontains a blue (resp. red) point.Otherwise, let X be their 
ommon point. Let P = BdV (S) ∪ BdW (S) \ X, and 
onsider its V -boundary, BdV (P ), and W -boundary, BdW (P ). Clearly, ea
h point in P = BdV (S) \ X belongs to
BdV (P ), and ea
h point in P = BdW (S) \ X belongs to BdW (P ).If BdV (P ) and BdW (P ) are disjoint, then 
olor BdV (S) blue, BdW (P ) and the other points red.Then any nonempty translate of V 
ontains a blue point. Suppose that we have a translate of W withtwo points, both blue. Then it should 
ontain X, and a point of BdV (P ). But this 
ontradi
ts ourassumption that BdV (P ) and BdW (P ) are disjoint. So, any translate of W whi
h 
ontains at leasttwo points of S, 
ontains a red point.If BdV (P ) and BdW (P ) are not disjoint, then they have one point in 
ommon, let Y be their
ommon point. If Y belongs to BdW (P ), then 
olor BdV (S) blue, BdW (P ) and the other points red.Then, by the same argument as before, any nonempty translate of V 
ontains a blue point, and anytranslate of W whi
h 
ontains at least two points of S, 
ontains a red point. Finally, if Y belongs to
BdV (P ), then we pro
eed analogously, but the roles of V and W , and the 
olors, are swit
hed. �Lemma 6. Let W = {V,W} be a set of two wedges, of type 4 (Hard). Then W is NC.Proof of Lemma 6. As usual, we only prove that {V,W} is ANC. Assume that W 
ontains thepositive x-axis. Just like in the de�nition of type 4 (Hard), extend the boundary hal�ines of W tolines, they divide the plane into four parts, Upper, Lower, Left, and Right, whi
h is W itself. We 
anassume without loss of generality that V 
ontains the negative x-axis, one side of V is in Upper, andone side is in Left.Observe that if a translate of V and a translate of W interse
t ea
h other, then one of them 
ontainsthe other one's apex.Claim 1. For any point set P and X ∈ P , either BdV (P \ X) \ BdV (P ) = ∅ or BdW (P \ X) \
BdW (P ) = ∅.Proof of Claim 1. Suppose on the 
ontrary that Y ∈ BdV (P \ X) \ BdV (P ) and Z ∈ BdW (P \
X) \ BdW (P ). Then X ∈ V (Y ) and X ∈ W (Z), so V (Y ) and W (Z) interse
t ea
h other, therefore,10



one of them 
ontains the other one's apex, say, Z ∈ V (Y ). But this is a 
ontradi
tion, sin
e Y is aboundary point of P \ X.Return to the proof of Lemma 6. Color BdV (S) \ BdW (S) red, and BdW (S) \ BdV (S) blue, theinterior points arbitrarily. Now 
onsider the points of BdV (S) ∩ BdW (S). For any X ∈ BdV (S) ∩
BdW (S), if BdV (S \ X) \ BdV (S) 6= ∅, then 
olor it red, if BdW (S \ X) \ BdW (S) 6= ∅, then 
olor itblue. For ea
h of the remaining points Y we have BdV (S \Y ) \BdV (S) = BdW (S \Y ) \BdW (S) = ∅.Color ea
h of these points su
h that they have the opposite 
olor than the the previous point of
BdV (S) ∩ BdW (S), in the y-ordering.To prove that this 
oloring is good, let V ′ ∈ TrV

2 , V ′∩S = {X,Y }. If it interse
ts BdV (S)\BdW (S),we are done. So assume that V ′ ∩ BdV (S) ⊂ BdV (S) ∩ BdW (S). Let X ∈ V ′ ∩ BdV (S). If X is red,then by the 
oloring rule, BdV (S \ X) \ BdV (S) = ∅. But then Y is also a V -boundary point, sowe have Y ∈ BdV (S) ∩ BdW (S). Again we 
an assume that Y is red, so BdV (S \ Y ) \ BdV (S) = ∅.Suppose that X <y Y . Sin
e V ′ ∩S = {X,Y }, X and Y are 
onse
utive points of BdV (S)∩BdW (S).Now it is not hard to see that BdW (S \ Y ) \ BdW (S) = ∅. Therefore, by the 
oloring rule, X and Yhave di�erent 
olors. For translates of W the argument is analogous, with the 
olors swit
hed. �Now we turn to the 
ase when we have more than two wedges.Lemma 7. For any s, t > 0 integers, there is a number f(s, t) with the following property.Let W = {W1,W2, . . . ,Wt} be a set of t wedges, su
h that any pair {Wi,Wj} is NC, and let S bea set of points. Then S 
an be de
omposed into t parts, S1, S2, . . . , St, su
h that for i = 1, 2, . . . , t, forany translate W ′
i of Wi, if |W ′

i ∩ S| ≥ f(s, t) then |W ′
i ∩ Si| ≥ s.Proof of Lemma 7. The existen
e of f(1, 2) is equivalent to the property that the 
orresponding twowedges are ANC. Now we show that f(s, 2) exists for every s. Let V and W be two wedges that forma NC pair. Let P V

1 , P V
2 , . . . , P V

s2f(1,2) be the path de
omposition of S of order s2f(1, 2), with respe
tto V . For i = 1, 2, . . . , s, let
Hi = ∪

isf(1,2)
j=(i−1)sf(1,2)+1P

V
j .For ea
h Hi, take the W -path de
omposition, PW

1 (Hi), . . . , P
W
sf(1,2)(Hi), and for j = 1, 2, . . . , s, let

Hj
i = ∪

jf(1,2)
k=(j−1)f(1,2)+1

PW
k (Hi).For every i, j = 1, 2, . . . , s, 
olor Hj

i , su
h that any translate of V (resp. W ) that interse
ts it in atleast f(1, 2) points, 
ontains at least one red (resp. blue) point of it. This is possible, sin
e the pair
{V,W} is ANC.Consider a translate V ′ of V that 
ontains at least s2f(1, 2) points of S. For every i, V ′ interse
ts
Hi in sf(1, 2) points, so there is a j su
h that it interse
ts Hj

i in at least f(1, 2) points. Therefore, V ′
ontains at least one red point of Hj
i , so at least s red points of S.Consider now a translate W ′ of W that 
ontains at least s2f(1, 2) points of S. There is an i su
h that

W ′ interse
ts Hi in at least sf(1, 2) points. Therefore, it interse
ts ea
h of PW
1 (Hi), . . . , P

W
sf(1,2)(Hi),11



in at least one point, so for j = 1, 2, . . . , s, W ′ interse
ts Hj
i in at least f(1, 2) points. Consequently,it 
ontains at least one blue point of ea
h Hj

i , so at least s blue points of S.Now let s, t > 2 �xed and suppose that f(s′, t − 1) exists for every s′. Let {W1,W2, . . . ,Wt} beour set of wedges, su
h that any pair of them is NC. Let s′ = f(s, 2). Partition our point set S into
S′

1, S
′
2, . . . , S

′
t−1 su
h that for i = 1, 2, . . . , t−1, for any translate W ′

i of Wi, if |W ′
i ∩S| ≥ f(s′, t−1) then

|W ′
i ∩ S′

i| ≥ s′ = f(s, 2). For ea
h i = 1, 2, . . . , t − 1, partition S′
i into two parts, S′′

i and St
i , su
h thatfor any translate W ′

i of Wi, if |W ′
i ∩S′

i| ≥ f(s, 2) then |W ′
i ∩S′′

i | ≥ s, and for any translate W ′
t of Wt, if

|W ′
t ∩ S′

i| ≥ f(s, 2) then |W ′
t ∩ St

i | ≥ s. Finally, for i = 1, 2, . . . , t − 1, let Si = S′′
i and let St = ∪t−1

j=1S
t
j.For i = 1, 2, . . . , t − 1, any translate W ′

i of Wi, if |W ′
i ∩ S| ≥ f(s′, t − 1) then |W ′

i ∩ S′
i| ≥ s′ = f(s, 2),so |W ′

i ∩ Si| ≥ s,And for any translate W ′
t of Wt, if |W ′

i ∩ S| ≥ f(s′, t − 1), then for some i = 1, 2, . . . t − 1,
|W ′

t ∩ S′
i| ≥

f(s′,t−1)
t−1 ≥ f(s, 2), therefore, |W ′

t ∩ St
i | ≥ s, so |W ′

t ∩ St| ≥ s. This 
on
ludes the proof ofLemma 7. �Remark. The proofs of Lemmas 2, 4, 5, and 6 imply that f(1, 2) ≤ 8. Combining it with the proof ofLemma 7 we get the bound f(s, t) ≤ (8s)2
t−1 .Lemma 8. A set of wedges W = {W1,W2, . . . ,Wt} is NC if and only if any pair {Wi,Wj} is NC.Proof of Lemma 8. Clearly, if some pair {Wi,Wj} is not NC, then the whole set W is not NC either.Suppose that every pair {Wi,Wj} is NC. De
ompose S into t parts S1, S2, . . . , St with the propertythat for i = 1, 2, . . . , t, for any translate W ′
i of Wi, if |W ′

i ∩ S| ≥ f(3, t) then |W ′
i ∩ Si| ≥ 3. Then, byLemma 1, ea
h Si 
an be 
olored with red and blue su
h that if |W ′

i ∩Si| ≥ 3 then W ′
i 
ontains pointsof both 
olors. So this 
oloring of S has the property that for i = 1, 2, . . . , t, for any translate W ′

i of
Wi, if |W ′

i ∩ S| ≥ f(3, t) then it 
ontains points of both 
olors. �3 Proof of Theorem 1.Suppose that P is an open 
onvex polygon of n verti
es and P = { Pi | i ∈ I } is a 
olle
tion oftranslates of P whi
h forms an M -fold 
overing of the plane. We will set the value of M later. Let
m be the minimum distan
e between any vertex and non-adja
ent side of P . Take a square grid G ofbasi
 distan
e m/2. Obviously, any translate of P interse
ts at most K = 4π(diam(P )+m)2/m2 basi
squares. For ea
h (
losed) basi
 square B, using its 
ompa
tness, we 
an �nd a �nite sub
olle
tion of thetranslates su
h that they still form an M -fold 
overing of B. Take the union of all these sub
olle
tions.We have a lo
ally �nite M -fold 
overing of the plane. That is, every 
ompa
t set is interse
ted by�nitely many of the translates. It is su�
ient to de
ompose this 
overing. For simpli
ity, use the samenotation P = { Pi | i ∈ I } for this sub
olle
tion.We formulate and solve the problem in its dual form. Let Oi be the 
enter of gravity of Pi. Sin
e Pis an M -fold 
overing of the plane, every translate of P̄ , the re�e
tion of P through the origin, 
ontainsat least M points of the lo
ally �nite set O = { Oi | i ∈ I }.12



The 
olle
tion P = { Pi | i ∈ I } 
an be de
omposed into two 
overings if and only if the set
O = { Oi | i ∈ I } 
an be 
olored with two 
olors, su
h that every translate of P̄ 
ontains a point ofboth 
olors.Let W = {W1,W2, . . . ,Wn} be the set of wedges that 
orrespond to the verti
es of P̄ . By the
onvexity of P̄ , no pair {Wi,Wj} is of type 5 (Spe
ial), therefore, by the previous Lemmas, ea
h pairis NC. Consequently, by Lemma 8, W is NC as well. So there is a k with the following property.* Any set of points S 
an be 
olored with two 
olors su
h that any translate of W1,W2, . . . ,Wn that
ontains at least k points of S, 
ontains points of both 
olors.Choose M su
h that M ≥ kK, and 
olor the points of O in ea
h basi
 square separately, withproperty *.Sin
e any translate P ′ of P̄ interse
ts at most K basi
 squares of the grid G, P ′ 
ontains at least
M/K ≥ k points of O in the same basi
 square B′. By the 
hoi
e of the grid G, B′ 
ontains at mostone vertex of P ′, hen
e B′ ∩ P ′ = B′ ∩ W , where W is a translate of some Wi ∈ W. So, by property*, P ′ 
ontains points of O ∩ B′ of both 
olors. This 
on
ludes the proof of Theorem 1. �4 Con
luding RemarksThroughout this paper we made no attempt to optimize the 
onstants. However, it may be an inter-esting problem to determine (asymptoti
ally) the smallest k in the proof of Theorem 1.Another interesting question is to de
ide whether this 
onstant depends only on the number ofverti
es of the polygon or on the shape as well. In parti
ular, we 
annot verify the following.Conje
ture. There is a 
onstant k su
h that any k-fold 
overing of the plane with translates of a
onvex quadrilateral 
an be de
omposed into two 
overings.One 
an also investigate whether a given 
overing 
an be de
omposed into s 
overings, for some�xed s. For any planar set P and s ≥ 1, if it exists, let k = k(s, P ) be the smallest number su
h thatany k-fold 
overing of the plane with translates of P 
an be de
omposed into s 
overings. By Theorem1, k(2, P ) exists for any open 
onvex polygon P . With a slight modi�
ation of its proof, we get thefollowing more general result.Theorem 1'. For any open 
onvex polygon P , and any s, there exists a (smallest) number k = k(s, P )su
h that any k-fold 
overing of the plane with translates of P 
an be de
omposed into s 
overings.Our proof gives k(s, P ) < KP (8s)2

n−1 , where KP is the 
onstant K from the proof of Theorem 1and n is the number of verti
es of P . For 
entrally symmetri
 open 
onvex polygons Pa
h and Tóth[PT07℄ established a mu
h better upper bound, whi
h is quadrati
 in s. Re
ently, Aloupis et al. [A08℄improved it to linear. They showed that, for any 
entrally symmetri
 open 
onvex polygon P , there isan αP su
h that k(s, P ) < αP s. The best known lower bound on k(s, P ) is (s, P ) ≥ ⌊4s/3⌋−1 [PT07℄.Our proofs use the assumption that the 
overing is lo
ally �nite, and for open polygons we 
ould�nd a lo
ally �nite sub
olle
tion whi
h is still a k-fold 
overing. Still, we strongly believe that Theorem13



1 holds for 
losed 
onvex polygons as well.A
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