
Convex polygons are over-deomposableDömötör Pálvölgyi∗ Géza Tóth†AbstratWe show that for any open onvex polygon P there is a onstant k(P ) suh that any k(P )-foldovering of the plane with translates of P an be deomposed into two overings.1 IntrodutionLet P = { Pi | i ∈ I } be a olletion of planar sets. It is a k-fold overing if every point in the planeis ontained in at least k members of P. A 1-fold overing is simply alled a overing.De�nition. A planar set P is said to be over-deomposable if the following holds. There exists aonstant k = k(P ) suh that every k-fold overing of the plane with translates of P an be deomposedinto two overings. J. Pah proposed the problem of determining all over-deomposable sets in 1980.For related problems, onjetures, see [BMP05℄, Chapter 2.1.Conjeture. (J. Pah) All planar onvex sets are over-deomposable.This onjeture has been veri�ed in three speial ases.Theorem A. (i) [P86℄ Every entrally symmetri open onvex polygon is over-deomposable.(ii) [MP86℄ The open unit dis is over-deomposable.(iii) [TT07℄ Every open triangle is over-deomposable.In this note we verify the onjeture for open onvex polygons.Theorem 1. Every open onvex polygon is over-deomposable.Just like in [P86℄ and in [TT07℄, we formulate and solve the problem in its dual form. That is,suppose P is a polygon of n verties and we have a olletion P = { Pi | i ∈ I } of translates of P .Let Oi be the enter of gravity of Pi. The olletion P is a k-fold overing of the plane if and only ifevery translate of P̄ , the re�etion of P through the origin, ontains at least k points of the olletion
O = { Oi | i ∈ I }.
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The olletion P = { Pi | i ∈ I } an be deomposed into two overings if and only if the set
O = { Oi | i ∈ I } an be olored with two olors, suh that every translate of P̄ ontains a point ofboth olors.Divide the plane into small regions, say, squares, suh that eah square ontains at most one vertexof any translate of P̄ . If a translate of P̄ ontains su�iently many points of O, then it ontains manypoints of O in one of the little squares. We olor the points of O separately in eah of the squares.If we onentrate on points in just one of the little squares, then instead of translates of P̄ we anonsider translates of n di�erent wedges, orresponding to the n verties of P .In Setion 2 we prove some results about oloring point sets with respet to translates of wedges.In Setion 3 we formulate the problem preisely in the dual version, and apply the results of Setion 2to prove Theorem 1.2 PreparationSuppose we have two hal�ines, e and f , both of endpoint O. Then they divide the plane into two parts,
W1 W2, whih we all wedges. A losed wedge ontains its boundary, an open wedge does not. Point
O, where the two boundary lines meet, is alled the apex of the wedges. The angle of a wedge is theangle between its two boundary hal�ines, measured inside the wedge. That is, the sum of the angles of
W1 and W2 is 2π. Now let W be a wedge, and X be a point in the plane. A translate of W suh thatits apex is at X, is denoted by W (X). More generally, for points X1,X2, . . . Xk, W (X1,X2, . . . Xk)denotes the minimal translate of W (for ontainment) whose losure ontains X1,X2, . . . Xk. The setof all translates of W is denoted by TrW . Let −W denote the re�etion of W about the origin.De�nition 1. Suppose that W = { Wi | i ∈ I } is a olletion of wedges. W is said to be non-on�iting or simply NC, if there is a onstant k with the following property. Any �nite set of points
S an be olored with two olors suh that any translate of a wedge W ∈ W that ontains at least kpoints of S, ontains a point of both olors.For any �xed W and S, we an and will assume without loss of generality that the points of S arein general position with respet to W, that is, they do not determine a line parallel to the boundaryline of any W ∈ W. Indeed, if there are two suh points, slightly perturb the points. It is easy to seethat every subset of the original point set that an be ut o� by a translate of a W ∈ W, an also beut o� the perturbed point set.First suppose that we have only one open wedge, that is, W = {W}.Lemma 1. A single wedge is NC.Proof of Lemma 1. Let S be a �nite point set and W a wedge. We prove the statement with k = 3,that is, S an be olored with two olors suh that any translate of W that ontains at least 3 pointsof S, ontains a point of both olors. Suppose �rst that the angle of W is at least π. Then W is theunion of two halfplanes, A and B. Take the translate of A (resp. B) that ontains exatly two pointsof S, say, A1 and A2 (resp. B1 and B2). There might be oinidenes between A1, A2 and B1, B2,2



therefore the set {A1, A2, B1, B2} ontains two, three, or four di�erent points. But in any ase, wean olor {A1, A2, B1, B2} suh that A1 and A2 (resp. B1 and B2) are of di�erent olors. Now, if atranslate of W ontains three points, it ontains either A1 and A2, or B1 and B2, and we are done.Suppose now that the angle of W is less than π. We give two proofs in this ase, sine we will applythe ideas of both proofs later. In fat, we show that in this ase the NC property holds with k = 2.We an assume that the positive x-axis is in W , and that no two points have the same y-oordinate.Both of these an be ahieved by an appropriate rotation. We say that X <y Y if the y-oordinate of
X is smaller than the y-oordinate of Y . This ordering is alled the y-ordering. A subset I of S is aninterval of S if ∀X <y Y <y Z ∈ S : X,Z ∈ I → Y ∈ I.The boundary of S with respet to W , BdW (S) = {X ∈ P : W (X)∩ S = ∅}. Note that a translateof W always intersets the boundary in an interval. For eah X ∈ BdW (S) the shadow of X is
ShW (X) = {Y ∈ S : W (Y )∩BdW (S) = X}. Observe that ∀X,Y ∈ BdW (S) : ShW (X)∩ShW (Y ) = ∅.For the �rst proof, olor the points of the boundary alternating, aording to the order <y. Forevery boundary point X, olor every point in the shadow of X to the other olor than X. Color therest of the points arbitrarily. Any translate of W that ontains at least two points, ontains one ortwo boundary points. If it ontains one boundary point, then the other point is in its shadow, so theyhave di�erent olors. If it ontains two boundary points, then they are onseutive points aordingto the y-order, so they have di�erent olors again. This �nishes the �rst proof.
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Figure 1: Z replaes X in W (2; y).For the seond proof, for any �xed y, let W (2; y) be the translate of W whih (1) ontains at mosttwo points of S, (2) its apex has y-oordinate y, and (3) its apex has minimal x-oordinate. It is easy tosee that for any y, W (2; y) is uniquely de�ned. Examine, how W (2; y) hanges as y runs over the realnumbers. If y is very small (smaller than the y-oordinate of the points of S), then W (2; y) ontainstwo points, say X and Y , and one more on its boundary. As we inrease y, the apex of W (2; y) hangesontinuously. How an the set {X,Y }, of the two points in W (2; y) hange? For a ertain value of y,one of them, say, X, moves to the boundary. At this point we have Y inside, and two points, X, and
Z on the boundary. If we slightly further inrease y, then Z replaes X, that is, Y and Z will be in
W (2; y) (see Figure 1). As y inreases to in�nity, the set {Z, Y }, ould hange several times, but the3



same way. De�ne a graph whose verties are the points of S, and two verties, U and V are onnetedi� V replaed U during the proedure. We get two paths, P1 and P2. The pair (P1, P2) is alled thepath deomposition of S with respet to W , of order two.On Figure 2, two examples are given. The verties of P1 are X1,X2, . . ., and the verties of P2are Y1, Y2, . . .. On both examples, the translates of W are given in the positions when some point isreplaing another.Color the verties of P1 red, the verties of P2 blue. Observe that eah translate of W that ontainsat least two points, ontains at least one vertex of both P1 and P2. This ompletes the seond proof.
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Figure 2: Path deompositions of order two. P1 = X1X2 . . ., P2 = Y1Y2 . . ..Now we an turn to the ase when we have translates of two wedges at the same time. We distinguishseveral ases aording to the relative position of the two wedges, V and W .Type 1 (Big): One of the wedges has angle at least π.For the other ases, we an assume without loss of generality that W ontains the positive x-axis.Extend the boundary hal�ines of W to lines, they divide the plane into four parts, Upper, Lower, Left,and Right, whih is W itself. See Figure 3.Type 2 (Halfplane): One side of V is in Right and the other one is in Left. That is, the unionof the wedges over a halfplane. See Figure 4.Type 3 (Contain): Either (i) one side of V is in Upper, the other one is in Lower, or (ii) bothsides are in Right or (iii) both sides are in Left. See Figure 5.Type 4. (Hard): One side of V is in Left and the other one is in Upper or Lower. This will bethe hardest ase. See Figure 6. 4
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VFigure 4: Type 2 (Halfplane)Type 5. (Speial): Either (i) one side of V is in Right and the other one is in Upper or Lower, or(ii) both sides are in Upper, or (iii) both sides are in Lower. That is, the union of the wedges is in anopen halfplane whose boundary ontains the origin, but none of them ontain the other. See Figure 7.It is not hard to see that there are no other possibilities. Observe that two wedges orrespondingto the verties of a onvex polygon annot be of type 1 (Big) or of type 5 (Speial). This will be usedin the proof of Theorem 1.It is shown in [P08℄ that if W = {V,W} is a set of two wedges of type 5 (Speial), then W is notNC. In a series of Lemmas we show that all other pairs are NC.
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Figure 7: Type 5 (Speial)Lemma 2. Let W = {V,W} be a set of two wedges, of type 3 (Contain). Then W is NC.Suppose that U is a wedge that ontains the positive x-axis and has angle less than π. For any
k > 0, and point set S, let TrU

k (S) be the set of translates of U that ontain exatly k points of S.Just like in the proof of Lemma 1, for any �xed y, and k > 0, let U(k; y) be the translate of Uwhih (1) ontains at most k points of S, (2) its apex has y-oordinate y, and (3) its apex has minimal
x-oordinate. If y is very small, then U(k; y) ontains k points, say X1,X2, . . . ,Xk, and one more onits boundary. As we inrease y, the apex of U(k; y) hanges ontinuously. For a ertain value of y, oneof X1,X2, . . . ,Xk, say, X1, moves to the boundary. At this point we have X2, . . . ,Xk inside, and twopoints, X1, and X ′

1 on the boundary. If we slightly further inrease y, then X ′
1 replaes X1, that is,

X ′
1 and X2, . . . ,Xk will be in U(k; y). As y inreases to in�nity, some other points ould be replaedsimilarly. De�ne a graph whose verties are the points of S, and two verties, X and Y are onnetedi� X replaed Y during the proedure. We get k paths, PU

1 , PU
2 , . . . , PU

k . Eah translate of U thatontains at least k points of S, ontains at least one vertex of eah of PU
1 , PU

2 , . . . , PU
k . The k-tuple

(PU
1 , PU

2 , . . . , PU
k ) is alled the path deomposition of S with respet to W , of order k.Proof of Lemma 2. We an assume that W ⊃ V or W ⊃ −V and W ontains the positive x-axis.Let (PW

1 , PW
2 , . . . , PW

k ) be the path deomposition of S with respet to W , of order k.Observe that any translate of V intersets any PW
i in an interval of it. Indeed, if X1 <y X2 <y

X3 ∈ PW
i , then X2 ∈ W (X1,X3) ∩ −W (X1,X3), whih is a subset of V (X1,X3) ∩ −V (X1,X3). SeeFigure 8.We show that we an olor the points of S with red and blue suh that any translate of W whih6
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V WFigure 8: W (X1,X3) ∩ −W (X1,X3) ⊂ V (X1,X3) ∩ −V (X1,X3).ontains at least 4 points, and any translate of V whih ontains at least 14 points, ontains points ofboth olors. Consider (PW

1 , PW
2 , PW

3 , PW
4 ), the path deomposition of S with respet to W , of order

4. We olor PW
1 and PW

2 suh that every W ′ ∈ TrW
4 (S) ontains a blue point of them, and every

V ′ ∈ TrV
7 (PW

1 ∪ PW
2 ) ontains points of both olors. Similarly, we olor PW

3 and PW
4 suh that every

W ′ ∈ TrW
4 (S) ontains a red point of them, and every V ′ ∈ TrV

7 (PW
3 ∪ PW

4 ) ontains points of botholors. Finally, we olor the rest of the points R = S \ (PW
1 ∪ PW

2 ∪ PW
3 ∪ PW

4 ) suh that every
V ′ ∈ TrV

2 (R) ontains points of both olors.Reall that for any W ′ ∈ TrW
4 (S), |W ′ ∩ PW

1 | = |W ′ ∩ PW
2 | = |W ′ ∩ PW

3 | = |W ′ ∩ PW
4 | = 1. Forany X ∈ PW

1 , Y ∈ PW
2 , if there is a W ′ ∈ TrW

4 (S) with W ′ ∩ PW
1 = {X} and W ′ ∩ PW

2 = {Y }, thenwe say that X and Y are friends. If X (resp. Y ) has only one friend Y (resp. X), then we all it afan (of Y , resp. of X). If X or Y has at least one fan, then we say that it is a star. Those points thatare neither fans, nor stars are alled regular.For an example, see Firgure 2. On the left �gure, Y1 is a star, its fans are X2 and X3, the otherpoints are regular. On the right, Y2 is a star, its fan is X2, the other points are regular.Suppose �rst that all points of PW
1 and PW

2 are regular. Color every third point of PW
1 , red andthe others blue. In PW

2 , olor the friends of the red points blue, and olor the rest of the points of PW
2(every third) red. For any W ′ ∈ TrW

4 , W ′ ∩ PW
1 and W ′ ∩ PW

2 are friends, therefore, at least one ofthem is blue. On the other hand, any V ′ ∈ TrV
7 (PW

1 ∪ PW
2 ) ontains three onseutive points of PW

1or PW
2 , and they have both olors.Suppose now that not all the points of PW

1 and PW
2 are regular. Color all stars blue. The �rst andlast friend of a star, in the y-ordering, is either a star or a regular vertex, the others are fans. Colorthe friends of eah star alternatingly, aording to the y-ordering, starting with blue, exept the lasttwo friends; olor the last one blue, the previous one red. The so far unolored regular points of PW

1and PW
2 form pairs of intervals. We olor eah suh pair of interval the same way as we did in theall-regular ase, oloring the �rst point of eah pair of intervals red. See Figure 9.Clearly, if W ′ ∈ TrW

4 then it ontains at least one blue point of PW
1 ∪PW

2 . If V ′ ∈ TrV
7 (PW

1 ∪PW
2 ),then it ontains four onseutive points of PW

1 or PW
2 , say, X1,X2,X3,X4, in PW

1 . If X <y Y <y

Z ∈ PW
1 ∩ V ′ and Y is a star, then V ′ must ontain all fans of Y as well. Indeed, the fans of Y are7



in W (X,Z) \ (W (X) ∪ W (Z)), and by our earlier observations, this is in V (X,Z) ⊂ V ′. So, if either
X2 or X3 is a star, then V ′ ontains a red point, sine every star has a red fan. Sine the star itselfis blue, we are done in this ase. If X1,X2,X3,X4 ontains three onseutive regular verties then weare done again, by the oloring rule for the regular intervals. So we are left with the ase when X1 and
X4 are stars, X2 and X3 are regular. But in this ase V ′ also ontains the ommon friend Y of X2 and
X3 in PW

2 , whih is also a regular vertex. By the oloring rule for the regular intervals, one of Y , X2and X3 is red, the other two are blue, so we are done.
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Figure 9: Two examples of oloring of PW
1 ∪ PW

2 . Friends are onneted by edges.For PW
3 ∪PW

4 we use the same oloring rule as for PW
1 ∪PW

2 but we swith the roles of the olors.So any W ′ ∈ TrW
4 ontains at least one red point of PW

3 ∪PW
4 and any V ′ ∈ TrV

7 (PW
3 ∪PW

4 ) ontainsboth olors.Finally, we have to olor the rest of the points R = S \ (PW
1 ∪ PW

2 ∪ PW
3 ∪ PW

4 ) suh that every
V ′ ∈ TrV

2 (R) ontains points of both olors. This an be ahieved by the �rst proof of Lemma 1.Now any W ′ ∈ TrW
4 ontains at least one blue and at least one red point. If V ′ ∈ TrV

14, then eitherit ontains at least two points of R = P \(PW
1 ∪PW

2 ∪PW
3 ∪PW

4 ), or at least seven points of PW
1 ∪PW

2 ,or at least seven points of PW
3 ∪PW

4 , and in all ases it ontains points of both olors. This ompletesthe proof of Lemma 2. �De�nition 2. Suppose that W = {V,W} is a pair of wedges. W is said to be asymmetri non-on�iting or simply ANC, if there is a onstant k with the following property. Any �nite set of points
S an be olored with red and blue suh that any translate of V that ontains at least k points of S,ontains a red point, and any translate of W that ontains at least k points of S, ontains a blue point.The next tehnial result allows us to simplify all following proofs.Lemma 3. If a pair of wedges is not of type Speial, and ANC, then it is also NC.8



Proof of Lemma 3. We an assume without loss of generality that V ontains the positive x-axis, and
W ontains either the positive or the negative x-axis. Suppose that {V,W} is ANC, let k > 0 arbitrary,and let S be a set of points. First we olor BdV (S). Let U be a wedge that also ontains the positive
x-axis, but has a very small angle. Then translates of V and translates of U both interset BdV (S) inits intervals. Clearly, the pair {U,W} is of type Contain, therefore, by Lemma 2, we an olor BdV (S)suh that any translate of W , W ′ ∈ TrW

4 (BdV (S)) and any translate of U , U ′ ∈ TrU
14(BdV (S)) ontainsboth olors. But then any translate of V , V ′ ∈ TrV

14(BdV (S)) ontains both olors as well.Now we have to olor S \ BdV (S). We divide it into three parts as follows.
Sb = {X ∈ S \ BdV (S) | ∀Y ∈ V (X) ∩ BdV (S), Y is blue},
Sr = {X ∈ S \ BdV (S) | ∀Y ∈ V (X) ∩ BdV (S), Y is red},

S0 = S \ (BdV (S) ∪ Sb ∪ Sr).Any translate V ′ ∈ TrV that intersets Sb in at least one point, must ontain at least one bluepoint, from BdV (S), so we only have to make sure that it ontains a red point too. Similarly, any
V ′ ∈ TrV that intersets Sr in at least one point, must ontain a red point, and any V ′ ∈ TrV thatintersets S0 must ontain points of both olors.Thus, we an simply olor S0 suh that any W ′ ∈ TrW

2 (S0) ontains both olors, whih an bedone by Lemma 1.With Sb, and with Sr, respetively, we proeed exatly the same way as we did with S itself, butnow we hange the roles of V and W . We get the (still unolored) subsets Sb,b, Sb,r, Sb,0, Sr,b, Sr,r,
Sr,0 with the following properties.

• Any translate V ′ ∈ TrV or W ′ ∈ TrW , that intersets Sb,b (resp. Sr,r) in at least one point,must ontain at least one blue (resp. red) point.
• Any translate V ′ ∈ TrV that intersets Sb,r (resp. Sr,b) ontains a blue (resp. red) point, andany translate W ′ ∈ TrW that intersets Sb,r (resp. Sr,b) ontains a red (resp. blue) point.
• Any translate V ′ ∈ TrV that intersets Sb,0 (resp. Sr,0) ontains a blue (resp. red) point, andany translate W ′ ∈ TrW that intersets Sb,0 (resp. Sr,0) ontains points of both olors.Color all points of Sb,b and Sb,0 red, olor all points of Sr,r and Sr,0 blue. Finally, olor Sb,r usingthe ANC property of the pair (V,W ), and similarly, olor Sr,b also using the ANC property, but theroles of red and blue swithed. Now it is easy to hek that in this oloring any translate of V or Wthat ontains su�iently many points of S, ontains a point of both olors. �Remark. In [P08℄ it has been proved that if {V,W} is a Speial pair, then {V,W} is not ANC. So,the following statement holds as well.Lemma 3'. If a pair of wedges is ANC, then it is also NC.9



Lemma 4. Let W = {V,W} be a set of two wedges, of type 1 (Big). Then W is NC.Proof of Lemma 4. By Lemma 3, it is enough to show that {V,W} is ANC. Let W be the wedgewhose angle is at least π. Then W is the union of two halfplanes, say, H1 and H2. Translate bothhalfplanes suh that they ontain exatly one point of S, denote them by X1 and X2, respetively.Note that X1 may oinide with X2. Color X1 and X2 red, and all the other points blue. Then anytranslate of W that ontains at least one point, ontains a red point, and any translate of V thatontains at least three points, ontains a blue point. �Lemma 5. Let W = {V,W} be a set of two wedges, of type 2 (Halfplane). Then W is NC.Proof of Lemma 5. Again, it is enough to show that they are ANC. Sine {V,W} is of type 2(Halfplane), BdV (S) and BdW (S) have at most one point in ommon. If BdV (S) and BdW (S) aredisjoint, then olor BdV (S) blue, BdW (S) red, and the other points arbitrarily. Then any nonemptytranslate of V (resp. W ) ontains a blue (resp. red) point.Otherwise, let X be their ommon point. Let P = BdV (S) ∪ BdW (S) \ X, and onsider its V -boundary, BdV (P ), and W -boundary, BdW (P ). Clearly, eah point in P = BdV (S) \ X belongs to
BdV (P ), and eah point in P = BdW (S) \ X belongs to BdW (P ).If BdV (P ) and BdW (P ) are disjoint, then olor BdV (S) blue, BdW (P ) and the other points red.Then any nonempty translate of V ontains a blue point. Suppose that we have a translate of W withtwo points, both blue. Then it should ontain X, and a point of BdV (P ). But this ontradits ourassumption that BdV (P ) and BdW (P ) are disjoint. So, any translate of W whih ontains at leasttwo points of S, ontains a red point.If BdV (P ) and BdW (P ) are not disjoint, then they have one point in ommon, let Y be theirommon point. If Y belongs to BdW (P ), then olor BdV (S) blue, BdW (P ) and the other points red.Then, by the same argument as before, any nonempty translate of V ontains a blue point, and anytranslate of W whih ontains at least two points of S, ontains a red point. Finally, if Y belongs to
BdV (P ), then we proeed analogously, but the roles of V and W , and the olors, are swithed. �Lemma 6. Let W = {V,W} be a set of two wedges, of type 4 (Hard). Then W is NC.Proof of Lemma 6. As usual, we only prove that {V,W} is ANC. Assume that W ontains thepositive x-axis. Just like in the de�nition of type 4 (Hard), extend the boundary hal�ines of W tolines, they divide the plane into four parts, Upper, Lower, Left, and Right, whih is W itself. We anassume without loss of generality that V ontains the negative x-axis, one side of V is in Upper, andone side is in Left.Observe that if a translate of V and a translate of W interset eah other, then one of them ontainsthe other one's apex.Claim 1. For any point set P and X ∈ P , either BdV (P \ X) \ BdV (P ) = ∅ or BdW (P \ X) \
BdW (P ) = ∅.Proof of Claim 1. Suppose on the ontrary that Y ∈ BdV (P \ X) \ BdV (P ) and Z ∈ BdW (P \
X) \ BdW (P ). Then X ∈ V (Y ) and X ∈ W (Z), so V (Y ) and W (Z) interset eah other, therefore,10



one of them ontains the other one's apex, say, Z ∈ V (Y ). But this is a ontradition, sine Y is aboundary point of P \ X.Return to the proof of Lemma 6. Color BdV (S) \ BdW (S) red, and BdW (S) \ BdV (S) blue, theinterior points arbitrarily. Now onsider the points of BdV (S) ∩ BdW (S). For any X ∈ BdV (S) ∩
BdW (S), if BdV (S \ X) \ BdV (S) 6= ∅, then olor it red, if BdW (S \ X) \ BdW (S) 6= ∅, then olor itblue. For eah of the remaining points Y we have BdV (S \Y ) \BdV (S) = BdW (S \Y ) \BdW (S) = ∅.Color eah of these points suh that they have the opposite olor than the the previous point of
BdV (S) ∩ BdW (S), in the y-ordering.To prove that this oloring is good, let V ′ ∈ TrV

2 , V ′∩S = {X,Y }. If it intersets BdV (S)\BdW (S),we are done. So assume that V ′ ∩ BdV (S) ⊂ BdV (S) ∩ BdW (S). Let X ∈ V ′ ∩ BdV (S). If X is red,then by the oloring rule, BdV (S \ X) \ BdV (S) = ∅. But then Y is also a V -boundary point, sowe have Y ∈ BdV (S) ∩ BdW (S). Again we an assume that Y is red, so BdV (S \ Y ) \ BdV (S) = ∅.Suppose that X <y Y . Sine V ′ ∩S = {X,Y }, X and Y are onseutive points of BdV (S)∩BdW (S).Now it is not hard to see that BdW (S \ Y ) \ BdW (S) = ∅. Therefore, by the oloring rule, X and Yhave di�erent olors. For translates of W the argument is analogous, with the olors swithed. �Now we turn to the ase when we have more than two wedges.Lemma 7. For any s, t > 0 integers, there is a number f(s, t) with the following property.Let W = {W1,W2, . . . ,Wt} be a set of t wedges, suh that any pair {Wi,Wj} is NC, and let S bea set of points. Then S an be deomposed into t parts, S1, S2, . . . , St, suh that for i = 1, 2, . . . , t, forany translate W ′
i of Wi, if |W ′

i ∩ S| ≥ f(s, t) then |W ′
i ∩ Si| ≥ s.Proof of Lemma 7. The existene of f(1, 2) is equivalent to the property that the orresponding twowedges are ANC. Now we show that f(s, 2) exists for every s. Let V and W be two wedges that forma NC pair. Let P V

1 , P V
2 , . . . , P V

s2f(1,2) be the path deomposition of S of order s2f(1, 2), with respetto V . For i = 1, 2, . . . , s, let
Hi = ∪

isf(1,2)
j=(i−1)sf(1,2)+1P

V
j .For eah Hi, take the W -path deomposition, PW

1 (Hi), . . . , P
W
sf(1,2)(Hi), and for j = 1, 2, . . . , s, let

Hj
i = ∪

jf(1,2)
k=(j−1)f(1,2)+1

PW
k (Hi).For every i, j = 1, 2, . . . , s, olor Hj

i , suh that any translate of V (resp. W ) that intersets it in atleast f(1, 2) points, ontains at least one red (resp. blue) point of it. This is possible, sine the pair
{V,W} is ANC.Consider a translate V ′ of V that ontains at least s2f(1, 2) points of S. For every i, V ′ intersets
Hi in sf(1, 2) points, so there is a j suh that it intersets Hj

i in at least f(1, 2) points. Therefore, V ′ontains at least one red point of Hj
i , so at least s red points of S.Consider now a translate W ′ of W that ontains at least s2f(1, 2) points of S. There is an i suh that

W ′ intersets Hi in at least sf(1, 2) points. Therefore, it intersets eah of PW
1 (Hi), . . . , P

W
sf(1,2)(Hi),11



in at least one point, so for j = 1, 2, . . . , s, W ′ intersets Hj
i in at least f(1, 2) points. Consequently,it ontains at least one blue point of eah Hj

i , so at least s blue points of S.Now let s, t > 2 �xed and suppose that f(s′, t − 1) exists for every s′. Let {W1,W2, . . . ,Wt} beour set of wedges, suh that any pair of them is NC. Let s′ = f(s, 2). Partition our point set S into
S′

1, S
′
2, . . . , S

′
t−1 suh that for i = 1, 2, . . . , t−1, for any translate W ′

i of Wi, if |W ′
i ∩S| ≥ f(s′, t−1) then

|W ′
i ∩ S′

i| ≥ s′ = f(s, 2). For eah i = 1, 2, . . . , t − 1, partition S′
i into two parts, S′′

i and St
i , suh thatfor any translate W ′

i of Wi, if |W ′
i ∩S′

i| ≥ f(s, 2) then |W ′
i ∩S′′

i | ≥ s, and for any translate W ′
t of Wt, if

|W ′
t ∩ S′

i| ≥ f(s, 2) then |W ′
t ∩ St

i | ≥ s. Finally, for i = 1, 2, . . . , t − 1, let Si = S′′
i and let St = ∪t−1

j=1S
t
j.For i = 1, 2, . . . , t − 1, any translate W ′

i of Wi, if |W ′
i ∩ S| ≥ f(s′, t − 1) then |W ′

i ∩ S′
i| ≥ s′ = f(s, 2),so |W ′

i ∩ Si| ≥ s,And for any translate W ′
t of Wt, if |W ′

i ∩ S| ≥ f(s′, t − 1), then for some i = 1, 2, . . . t − 1,
|W ′

t ∩ S′
i| ≥

f(s′,t−1)
t−1 ≥ f(s, 2), therefore, |W ′

t ∩ St
i | ≥ s, so |W ′

t ∩ St| ≥ s. This onludes the proof ofLemma 7. �Remark. The proofs of Lemmas 2, 4, 5, and 6 imply that f(1, 2) ≤ 8. Combining it with the proof ofLemma 7 we get the bound f(s, t) ≤ (8s)2
t−1 .Lemma 8. A set of wedges W = {W1,W2, . . . ,Wt} is NC if and only if any pair {Wi,Wj} is NC.Proof of Lemma 8. Clearly, if some pair {Wi,Wj} is not NC, then the whole set W is not NC either.Suppose that every pair {Wi,Wj} is NC. Deompose S into t parts S1, S2, . . . , St with the propertythat for i = 1, 2, . . . , t, for any translate W ′
i of Wi, if |W ′

i ∩ S| ≥ f(3, t) then |W ′
i ∩ Si| ≥ 3. Then, byLemma 1, eah Si an be olored with red and blue suh that if |W ′

i ∩Si| ≥ 3 then W ′
i ontains pointsof both olors. So this oloring of S has the property that for i = 1, 2, . . . , t, for any translate W ′

i of
Wi, if |W ′

i ∩ S| ≥ f(3, t) then it ontains points of both olors. �3 Proof of Theorem 1.Suppose that P is an open onvex polygon of n verties and P = { Pi | i ∈ I } is a olletion oftranslates of P whih forms an M -fold overing of the plane. We will set the value of M later. Let
m be the minimum distane between any vertex and non-adjaent side of P . Take a square grid G ofbasi distane m/2. Obviously, any translate of P intersets at most K = 4π(diam(P )+m)2/m2 basisquares. For eah (losed) basi square B, using its ompatness, we an �nd a �nite subolletion of thetranslates suh that they still form an M -fold overing of B. Take the union of all these subolletions.We have a loally �nite M -fold overing of the plane. That is, every ompat set is interseted by�nitely many of the translates. It is su�ient to deompose this overing. For simpliity, use the samenotation P = { Pi | i ∈ I } for this subolletion.We formulate and solve the problem in its dual form. Let Oi be the enter of gravity of Pi. Sine Pis an M -fold overing of the plane, every translate of P̄ , the re�etion of P through the origin, ontainsat least M points of the loally �nite set O = { Oi | i ∈ I }.12



The olletion P = { Pi | i ∈ I } an be deomposed into two overings if and only if the set
O = { Oi | i ∈ I } an be olored with two olors, suh that every translate of P̄ ontains a point ofboth olors.Let W = {W1,W2, . . . ,Wn} be the set of wedges that orrespond to the verties of P̄ . By theonvexity of P̄ , no pair {Wi,Wj} is of type 5 (Speial), therefore, by the previous Lemmas, eah pairis NC. Consequently, by Lemma 8, W is NC as well. So there is a k with the following property.* Any set of points S an be olored with two olors suh that any translate of W1,W2, . . . ,Wn thatontains at least k points of S, ontains points of both olors.Choose M suh that M ≥ kK, and olor the points of O in eah basi square separately, withproperty *.Sine any translate P ′ of P̄ intersets at most K basi squares of the grid G, P ′ ontains at least
M/K ≥ k points of O in the same basi square B′. By the hoie of the grid G, B′ ontains at mostone vertex of P ′, hene B′ ∩ P ′ = B′ ∩ W , where W is a translate of some Wi ∈ W. So, by property*, P ′ ontains points of O ∩ B′ of both olors. This onludes the proof of Theorem 1. �4 Conluding RemarksThroughout this paper we made no attempt to optimize the onstants. However, it may be an inter-esting problem to determine (asymptotially) the smallest k in the proof of Theorem 1.Another interesting question is to deide whether this onstant depends only on the number ofverties of the polygon or on the shape as well. In partiular, we annot verify the following.Conjeture. There is a onstant k suh that any k-fold overing of the plane with translates of aonvex quadrilateral an be deomposed into two overings.One an also investigate whether a given overing an be deomposed into s overings, for some�xed s. For any planar set P and s ≥ 1, if it exists, let k = k(s, P ) be the smallest number suh thatany k-fold overing of the plane with translates of P an be deomposed into s overings. By Theorem1, k(2, P ) exists for any open onvex polygon P . With a slight modi�ation of its proof, we get thefollowing more general result.Theorem 1'. For any open onvex polygon P , and any s, there exists a (smallest) number k = k(s, P )suh that any k-fold overing of the plane with translates of P an be deomposed into s overings.Our proof gives k(s, P ) < KP (8s)2

n−1 , where KP is the onstant K from the proof of Theorem 1and n is the number of verties of P . For entrally symmetri open onvex polygons Pah and Tóth[PT07℄ established a muh better upper bound, whih is quadrati in s. Reently, Aloupis et al. [A08℄improved it to linear. They showed that, for any entrally symmetri open onvex polygon P , there isan αP suh that k(s, P ) < αP s. The best known lower bound on k(s, P ) is (s, P ) ≥ ⌊4s/3⌋−1 [PT07℄.Our proofs use the assumption that the overing is loally �nite, and for open polygons we ould�nd a loally �nite subolletion whih is still a k-fold overing. Still, we strongly believe that Theorem13
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