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Abstract

We show that deciding if a simple graph has a partial orientation

of its edges such that all vertices have a prescribed in-, out- and undi-

rected degree, is NP-complete. We prove a related question, that if we

know that in a soccer-tournament who played who so far, but we do

not know the outcomes, then deciding whether a score vector is legal

or not, is NP-complete.

1 Introduction

The problem of deciding whether we can direct a graph with each vertex
having a prescribed in- and out-degree is wellknown to be in P. It is another
interesting question to determine the complexity of the problem where in-
stead of a directed graph, we want to obtain a mixed graph, ie. a graph that
can have both directed and undirected edges, and we prescribe the in-, out-
and undirected-degree of each vertex. Let us denote the problem of deciding
whether this can be done or not by Partial Orientation Problem. We
show that Partial Orientation Problem is NP-complete.

The Elimination Problem is to decide whether a given team can still
win the tournament at some point. This was shown to be NP-complete not
so long ago independently by Bernholt et al. ([1]) and Kern and Paulusma
([2]). Later it was also generalized to various other point-systems by Kern and
Paulusma ([3]), in this paper they solve completely for which score allocation
rules the problem is NP-complete, assuming that we do not require that the
score vector is reachable in a valid tournament. They suspect that deciding
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if a score vector is reachable or not (if we know the remaining games) is a
di�cult problem. So let us denote the problem of deciding whether a given
score vector is a possible result of a soccer-tournament or not (if we know
which team played against which so far) by Score Vector Problem . In
this paper we prove that the Score Vector Problem is NP-complete (in
the case when teams get 1 < p 6= 2 points for winning, 1 for drawing and
0 for losing a game). The proof is an easy consequence of our construction
given to the Partial Orientation Problem.

We denote the degree of a vertex v in a simple graph by d(v). In the mixed
graph the in-degree is denoted by ρ(v), the out-degree by δ(v) and the number
of the adjacent undirected edges by θ(v). Thus d(v) = ρ(v) + δ(v) + θ(v).
When we say orientation, we mean three possibilities: The two directions and
the undirected case. Thus in the beginning we have a graph with unoriented
edges and we want to orient them.

2 Partial Orientation Problem is NP-complete

We reduce 3-SAT to the Partial Orientation Problem as follows:
We construct a graph for each input formula to 3-SAT. For each xi variable
the graph will have a tree that is almost binary; its root has degree two, each
vertex on an odd level has degree three and each vertex on an even level has
degree two. The last level is an even one, and from each leaf there is an edge
connecting the tree to the rest of the graph. (See Figure 1.) For the root
we prescribe ρ(ri) = δ(ri) = 1. For the orientation of each edge of the tree
there will be exactly two possibilities. The direction of the two edges of ri

will determine the orientation of each other edge in the tree.
For each vertex w on an odd level of the tree we prescribe ρ(w) = δ(w) =

θ(w) = 1 and for each vertex v on an even level we prescribe either ρ(v) =
δ(v) = 1 or ρ(v) = θ(v) = 1 or θ(v) = δ(v) = 1. When we say that v is ρδ
(or ρθ or δθ), we mean that for the degree two vertex v the prescription is
ρ(v) = δ(v) = 1. One of the two grandchildren of a ρδ vertex is always a
ρθ, while the other is always a δθ. Similarly, the ρθ vertices have ρδ and δθ
grandchildren and δθ vertices have ρδ and ρθ grandchildren. The root, which
has four grandchildren, has two ρθ and two δθ grandchildren. This �nishes
the description of the tree. Note that since every edge in the tree is incident
to a vertex of degree two, we have exactly two possible orientation for each
edge. When we say that an edge is ρδ, we mean that its orientation cannot
be undirected.

Eg., let us take one of ri's children, w, and both of w's children, v1 and v2.
The edge riw can be either directed towards w or away from w but it cannot
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Figure 1: The two possible orientations of the tree associated with xi.

be undirected. (See the two possibilities in Figure 1.) The edge connecting v1

to its child can be undirected or directed away from v1 but this is determined
by the orientation of riw. The edge connecting v2 to its child can be directed
towards v2 or be undirected and this is also determined by the orientation
of riw. These edges determine the orientation of the edges under them and
therefore the orientation of the whole tree depends on the choice at the root.
This way we can achieve that from one decision at ri we have an arbitrary
number of edges directed to the same way from the leaves of the tree. Let us
count how many.

Let us denote the number of the ρδ edges (the ones that cannot be undi-
rected) that are going from the 2lth level to the 2l + 1th by a(l) and the
number of the other edges at the same level by b(l). We have a(0) = 2 and
b(0) = 0 and it is easy to see that the equations a(l) = b(l − 1) and b(l) =
2a(l−1)+b(l−1) hold. Solving these we get a(l+1) = b(l) = 4(2l−(−1)l)/3.
For each variable xi, we need the tree associated with xi to have a(l) ≥ twice
the appearances of xi (or xi) in the clauses, so the size of the tree is only
polynomial. Note that half of the edges counted in a(l) are directed towards
the tree, and the other half away from the tree, whichever orientations we
choose at ri. We will call one of these orientations true and the other ori-
entation false. For each clause that contains xi we reserve an edge that is
directed away from the tree in the true orientation and towards the tree in
the false orientation. Similarly, for each clause that contains xi we reserve an
edge that is directed towards the tree in the true orientation and away from
the tree in the false orientation. This can be done since a(l) is su�ciently
large.

For each clause C the graph will have a vertex vc of degree 5. The pre-
scription for each vC is ρ(vC) = 3 and δ(vC) = 2. The three edges reserved
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for clause C (adjacent to the leaves of the trees associated with the variables
of C) are connected to the vertex vC . The remaining two edges are connected
to the degree two ρδ vertices vC1 and vC2.

Now we are done with the representation of our formula, we only need to
somehow get rid of the edges that have only one incident vertex so far. To
this end, we add the mirrored re�ection of everything constructed so far to
the graph. This means for every vertex v that belongs to a tree or a clause,
we add a v′ vertex that is connected to w′ if and only if v is connected to w.
We also connect v and v′ if and only if v has an edge that was not connected
to any other vertex yet. The prescription of v′ is ρ(v′) = δ(v), δ(v′) = ρ(v)
and θ(v′) = θ(v). This �nishes our construction.

Now we have to prove that this graph has a mixed orientation ful�ll-
ing the required prescriptions if and only if the original formula had a true
assignment.

First, if the formula had a true assignment, then let us orient the edges of
the trees associated with the true variables in their true orientation and orient
edges of the trees associated with the false variables in their false orientation.
Each vC will have at least one edge entering from a tree, we can pick the two
edges connecting it to vC1 and vC2 such that ρ(vC) = 3. We do the opposite
with each edge in the mirrored part of the graph, this guarantees a good
orientation for the vv′ type edges.

Similarly, if the graph has a good orientation, then let us pick the variables
associated with the trees whose orientation is true to be true, and the rest
to be false. Since ρ(vC) = 3 and only two edges can enter vC that are not
coming from a tree, therefore one of the trees associated with a variable of
C must have true orientation, thus each clause must have a true literal.

3 The Score Vector Problem

To prove that the Score Vector Problem is NP-complete, we as-
sociate a vertex of a graph to each of the teams. The graph is the same
as in the previous construction, but instead of prescribing the degrees of a
vertex v, we prescribe the score of the team associated with that vertex to
be pδ(v) + θ(v) (it would get this much if it had won δ(v), drew θ(v) and
lost ρ(v) games). Now we only have to notice that in our construction the
score of each vertex that has degree at most three, determines the number
of games that the team associated with that vertex won, drew and lost. Eg.,
if a vertex w has p + 1 points and d(w) = 3, this is only possible if it has
won one game, drew one game and lost one game (since 1 < p 6= 2). Since
none of the vertices adjacent to the vC 's drew any of their games, the vC 's
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must have 3 wins and 2 losses. Therefore our construction reduces 3-SAT to
Score Vector Problem if instead of the degrees we prescribe the scores.

Note that when p = 2, the construction fails because one win, one draw
and one losing worth the same number of points as three draws. For this
p = 2 case the problem is in P and the proof is a folklore; just take the
original simple graph, double every edge and ask whether this graph can be
(completely) directed such that for every vertex v the prescription is δ(v) =
the score of v.

In a soccer tournament usually the teams have played the same number
of matches at a given time, while in our construction the degrees vary. We
can �x this by adding a few new vertices who have won all their matches
and played some of the teams whose degree is less than the average. Also, in
tournaments everyone plays with everyone else in a round, so at any point
the who-played-who-so-far graph can be partitioned into perfect matchings.
Our construction with a little modi�cation can be transformed into a regular
bipartite graph that has this property.

4 Acknowledgments and Concluding Remarks

I would like to thank my supervisor, Zoltán Király for early discussions on
the subject. I would also like to thank Attila Bernáth for his useful advices.
He also noticed that if instead of the 3-SAT problem we use the ONE-
IN-THREE-SAT problem (meaning that in a 3-CNF we want exactly one
literal to be true, alsoNP-complete), then we do not need the vCi vertices and
thus we obtain a graph with maximum degree three, which is clearly optimal.

An interesting open question remains to determine the complexity of the
problem when we only know the score (or the in-, out- and undirected de-
grees) of each vertex and the number of games it played and we have to decide
whether it is a possible outcome of a real tournament or not. We conjecture
these problems to be in P although we could not even solve it in the case
when we know that everyone played with everyone exactly once (meaning
the tournament is �nished, ie. the graph is the complete graph). A similar
question can be raised concerning the Elimination Problem.
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