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Abstract. We prove that any finite point set P in the plane can be
three-colored such that there is no unit disk containing at least 1025
points, all of the same color.
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1 Introduction

Coloring problems for hypergraphs defined by geometric range spaces have been
studied extensively in different settings [1–21]. A pair (P,S), where P is a set of
points in the plane and S is a family of subsets of the plane (the range space),
defines a (primal) hypergraph H(P,S) whose vertex set is P, and edge set is
{S ∩ P | S ∈ S}. Given any hypergraph G, a planar realization of G is defined
as a pair (P,S) for which H(P,S) is isomorphic to G. If G can be realized with
some pair (P,S), where S is from some family F , then we say that G is realizable
with F .

It is an easy consequence of the properties of Delaunay-triangulations and
the Four Color Theorem that the vertices of any hypergraph realizable with
disks can be four-colored such that every edge that contains at least two vertices
contains two differently colored vertices. But are less colors sufficient if all edges
are required to contain at least m vertices for some large enough constant m?
The authors settled this question recently [6], showing that three colors are not
enough for any m, i.e., for any m, there exists an m-uniform hypergraph that is
not three-colorable and that permits a planar realization with disks.

For unit disks in arbitrary position, Pach and Pálvölgyi [16] showed that for
any m, there exists an m-uniform hypergraph that is not two-colorable and that
permits a planar realization with unit disks. Our main result is showing that for
large enough m three colors are sufficient for unit disks.

Theorem 1. Any finite point set P can be three-colored such that any unit disk
that contains at least 1025 points from P contains two points colored differently.

2 Hypergraph Colorings

It is important to distinguish between two types of hypergraph colorings that
we will use, the proper coloring and the polychromatic coloring.
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Definition 1. A hypergraph is properly k-colorable if its vertices can be colored
with k colors such that each edge contains points from at least two color classes.
Such a coloring is called a proper coloring.

Definition 2. A hypergraph is polychromatic k-colorable if its vertices can be
colored with k colors such that each edge contains points from each color class.
Such a coloring is called a polychromatic coloring.

Polychromatic colorability was studied for many geometric families. For hy-
pergraphs determined by pseudohalfplanes (defined as the regions on one side of
each pseudoline in some pseudoline arrangement) the following is known.

Theorem 2 (Keszegh-Pálvölgyi [12]). Given a finite collection of points and
pseudohalfplanes, the points can be k-colored such that every pseudohalfplane that
contains at least 2k − 1 points contains all k colors.

Polychromatic colorability is a much stronger property than proper colorabil-
ity. Any polychromatic k-colorable hypergraph is proper 2-colorable. We gener-
alize this trivial observation to the following statement about unions of poly-
chromatic k-colorable hypergraphs.

Theorem 3. Let H1 = (V,E1), . . . ,Hk−1 = (V,Ek−1) be hypergraphs on a com-
mon vertex set V . If H1, . . . ,Hk−1 are polychromatic k-colorable, then the hy-

pergraph
k−1⋃
i=1

Hi = (V,
k−1⋃
i=1

Ei) is proper k-colorable.

Proof. Let ci : V → {1, . . . , k} be a polychromatic k-coloring of Hi. Choose
c(v) ∈ {1, . . . , k} such that it differs from each ci(v). We claim that c is a proper

k-coloring of
k−1⋃
i=1

Hi. To prove this, it is enough to show that for every edge

H ∈ Hi and for every color j ∈ {1, . . . , k − 1}, there is a v ∈ H such that
c(v) 6= j. We can pick v ∈ H for which ci(v) = j. This finishes the proof.

Theorem 3 is sharp in the sense that for every k there are k−1 polychromatic
k-colorable hypergraphs such that their union is not properly (k − 1)-colorable.

3 Proof of Theorem 1

Let P denote the points and let D denote the unit (radius) disks that contain
at least 1025 points from P.

The first step of the proof is a classic divide and conquer idea [15]. Divide
the plane into a grid of squares of side length 1√

10
≈ 0.31 such that no point of P

falls on the boundary of a grid square. Since a square of side length two intersects
at most eight rows and eight columns of the grid, each unit disk intersects at
most 641 squares. Let D ∈ D be one of the unit disks. Since D contains at least

1 In fact less, but we are not trying to optimize our constants.
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1025 = 64 · 16 + 1 points from P, by the pigeonhole principle there is a square
S such that S ∩D contains at least 17 points from P.

Hence it is enough to show the following theorem. Applying it separately
for the points in each square of the grid provides a proper three-coloring of the
whole point set.

Lemma 1. Suppose P is a finite point set inside a square of side length 1√
10

.

Then we can color the points of P by three colors such that any unit disk, that
contains at least 17 points from P, will contain points from all three colors.

Proof. Since 2 · ( 1√
10

)2 < 1, if the center of a unit disk lies in the square, then

the disk contains the whole square. As we will use more than one color to color
the points in the square, such disks cannot be monochromatic. The sidelines
of the square divide the plane into nine regions. Denote the unbounded closed
quadrant regions by Q1, Q2, Q3, Q4 and the unbounded open half-strip regions
by S1, S2, S3, S4, numbered in a clockwise order, according to Figure 1. We need
to assure that no matter in which of these eight regions the center of a unit disk
lies, it is not monochromatic.

Let `x be a horizontal halving line for P, that is, a horizontal line such that

both (closed) halfplanes bounded by `x contain at least |P|2 points. Similarly, let
`y be a vertical halving line for P and let O denote the intersection of `x and `y.
These lines divide the square into four (closed) rectangular regions R1, R2, R3,
R4, indexed according to Figure 1. The usefulness of this further subdivision
comes from the following observation.

Observation 1 If the center of a unit disk lies in Qi and the disk contains O,
then the disk contains the whole region Ri.

S3

R3

R4R1

S4

Q3Q2

S2

QB
1
QA

1

Q4S1

R2

O

Fig. 1. Regions around a grid square.

We will color the four regions R1, . . . , R4 separately, but Observation 1 re-
duces the number of disks that have to be considered for each region.
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Let Di ⊂ D denote the disks that contain at least 5 point from Ri∩P. We will
color the points of Ri with three colors such that for each D ∈ Di the following
holds: either D ∩ Ri ∩ P is not monochromatic or D contains the whole region
Ri+2 (indexed modulo 4).

By symmetry it is enough to consider R1. If |R1 ∩ P| ≤ 4, then Di is empty
and we are done. Otherwise we divide the disks in Di into three groups. The line
of the diagonal from the bottom-left corner of the square to its top-right corner
splits Q1 into two parts, as marked with a dashed line on Figure 1. Denote by
QA

1 the bottom-right part of Q1 and by QB
1 its upper-left part. Let A ⊂ D1 be

the disks whose center lies in QA
1 ∪S1 ∪Q4 ∪S4. Let B ⊂ D1 be the disks whose

center lies in QB
1 ∪ S2 ∪ Q2 ∪ S3. Let C ⊂ D1 be the disks whose center lies in

the closed quadrant Q3.

If a disk is in C, then it contains O, thus by Observation 1 it also contains the
whole region R3, and the coloring of the points P ∩R3 will ensure that it cannot
be monochromatic. Hence, it is enough to properly three-color the hypergraph
H(R1 ∩P,A∪B). First we show that both H(R1 ∩P,A) and H(R1 ∩P,B) are
realizable with pseudohalfplanes. We use the following geometric lemma.

Lemma 2. If we take two disks from A, or two disks from B, their boundaries
intersect at most once inside R1.

Proof. Let R = ∪4i=1Ri denote the square and define two trapezoidal regions
around R as follows. Denote by X∗ the reflection of any region X to the bottom-
right corner of the square R. One trapezoid is (QA

1 ∪ S1) ∩ S∗4 , and the other is
(QA

1 ∪S1)∗∩S4, see the shaded regions on Figure 2. The trapezoids have 45◦, 90◦

and 135◦ degree angles and the ratio of their sides is 1 : 1 : 2 :
√

2.

Let D1 and D2 be two disks from A and let o1, o2 denote their centers. If
the boundaries of D1 and D2 intersect twice inside R, then the midpont of o1o2
falls into R. It is easy to see that this implies that o1 and o2 must be located
in the shaded regions shown in Figure 2. If we place o1 outside of the shaded
region, then the possible locations for o2 fall outside of QA

1 ∪ S1 ∪Q4 ∪ S4. On
the other hand if o1, o2 are in the shaded region, then D1 and D2 contains R as
( 3√

10
)2 + ( 1√

10
)2 = 1. This contradicts that their boundaries intersect inside R.

R
1

QA
1

S1 Q4

S4

Fig. 2. Locations for two points in QA
1 ∪ S1 ∪Q4 ∪ S4 whose midpoint lies in R.
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A similar argument holds for B, finishing the proof of Lemma 2.

We remark that Lemma 2 holds also for squares of side length 1√
5

with a

more careful argument.

Therefore, H(R1∩P,A) and H(R1∩P,B) are hypergraphs that can be real-
ized by pseudohalfplanes. By definition each edge in these hypergraphs contains
at least 5 vertices. Thus by Theorem 2 they are polychromatic three-colorable,
and by Theorem 3, H(R1 ∩ P,A ∪ B) is proper three-colorable.

We apply the previous argument for each Ri. To see that the resulting col-
oring is good, take any disk D ∈ D. Since D contains at least 17 = 4 · 4 + 1
points from P, there is a region Ri such that D contains at least 5 points from
Ri∩P, that is D ∈ Di. Therefore either D contains two points of different colors
in Ri, or D contains the whole region Ri+2. Since `x and `y are halving lines
|P ∩ Ri| = |P ∩ Ri+2| (indexed modulo 4). Hence region Ri+2 contains at least
5 point from P. The points inside Ri+2 are not monochromatic, hence D is not
monochromatic in either case.

4 Concluding Remarks

Let the m-fat edges of a hypergraph be those edges whose cardinality is at least
m. We can restate Theorem 1 the following way. If P is a set of point in the plane
and S is a set of unit disks, then the m-fat edges of the hypergraph H(P,S)
form a hypergraph that is properly three-colorable.

One can consider other geometric families for S. For example, let C be a
convex compact set whose boundary is smooth and let S be a family of translates
of C. A small refinement of the argument above shows that there is an m = m(C)
such that the m-fat edges of H(P,S) form a three-colorable hypergraph. It was
shown in [16] that for every smooth compact set C and for every m there is a
non-two-colorable hypergraph that can be realized by C. We can show that this
result extends to several sets whose boundary is only partly smooth, such as a
halfdisk, answering an open problem from [16]. The construction is essentially
the same as in [13, 16, 19], using the arrangement shown in Figure 3 for the
recursive step.

p (root)

P (k, `− 1)

P (k − 1, `)

Fig. 3. Recursive step for the non-two-colorable half disk construction.
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